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STORAGE PROBLEMS WHEN DEMAND IS "ALL OR NOTHING"*

D. P Gaver and P A Jacobs

Department of Operations Research
Naval Postgraduate Schaol
Monterey, Calitorna

ABSTRACH

An mventory ol physical goods 01 Storage space Gn o communicdlions sis-
tem buffer. for mstance? olien experiences “all or nothing” demand o .
demand of random size D can be immediatehoand ennrely titled from stock i
wsosatistied, but otherwise 1 vanshes  Probabilistic properties of the resalting
mnventory evel are discussed anabvticalls . both for the single bufler and ot

muluple bafler problems Namencdl resalts e paesented

1. INTRODUCTION

The usual storage or inventory problems involve demands imagined to occur randomly.
and to be capable of reducing any available stock to zero, or even beyond, when backordering is
permitted. Yet in many situations at least one component of total demand is "all or nothing:”
that is, it reduces invertory only it it can be entirely satistied by the inventory present. and oth-
erwise seeks another supplier. Here are examples.

(4} A manufacturer’s warchouse is filled with a certain item at the beginning of the sel-
hing scason: let [ denote the inttial inventory. Suppose that demands oceur as Tollows: 4 mes-
sage is sent requesting that Dy items be shipped from inventory, but only af the entire order can
be filied. That is, the demand is satistied it Dy < 1 in which case inventory level is reduced o
Y)Y =1 - Dyowhile it Dy > [ the inventory remains unchanged and /(1) = [ Allowing for
no replenishment, the second demand, of size ) interacts with inventory /(1) so that it is
filled it D, < 7D, but is not placed if Dy > (1), The process continues along these lines
until the selling scason is over and there are no more demands.

(b) A bufler storage device used to contain messages prior to their batch transmission
has capacity [ Messages of length {0, i = 1.2, ..} approach the butfer successively, and are
admitted on an "all or nothing” basis, just as was true of demands for physical mventory in (a)
above. Once again rejection will oceur, and more fregquenthy to large demands (messages) than
to short ones.

(¢) A system ol many buffer storage devices s used 1o contain messages prior 1o their
batch transmission.  Each buffer has capacity 1 Messages of length {D,.0 0 = 1.2, 1 approach
the device and are successively admitted 1o the first butter until there is a demand that exceeds
its remaining capacity.  The first buffer is left torever and the demand that exceeds the first

Thes rescarch sas suppotted by shie Natoaat Soence Touadano ander NSTENG 70000 NG 9 08 and M s
SO and bueoene Ofhce of Naval Researct under Conrraet Task SR 1 (




530 DP GAVER AND P.A JACOBS

buffer, plus successive demands, applics to the second buffer until one occurs that exceeds the
remaining capacity. This demand then applies to the third buffer, and so on. As a result there
will be some unused capacity in each buffer. For a similar problem see the paper of Coffman.
Hofri. and So [2]. For related, although not identical formulations, see Cohen [3], Gavish and
Schweitzer [6]. and Hokstad [7).

In Section 2 we will discuss some models for the situations in Examples (a) and (b). We
compute such items as the distribution of the amount of inventory left at some time s and the
distribution of the times of successive unsatisfied demands.

In Section 3 we next consider a model for Example (¢), and derive equations for the lim-
iting distribution of used capacity of a buffer and the expected used capacity of a buffer. It
seems to be difficult to obtain simple analytic solutions to these equations, but certain illustra-
tive numerical results are provided.

2. THE ONE-BUFFER INVENTORY PROBLEM

Suppose that demands for available stock occur according to a compound Poisson process:
if N, is the number of demands that occur in (0, (], then {N,:¢ = 0} is a stationary Poisson
process with rate A; the sizes of successive demands {D,} are independent with common distri-
bution F. Assume that there are no replenishments of inventory. Let {/: ¢+ = 0} denote the
stochastic process describing available inventory at time r, and let {/(n}. n = 0,1, ...} be the
stochastic process of available inventory following the mth demand. It is apparent from our
assumptions that both {/,} and {/(n)} are Markov processes.

2.1 Functional Equations for the Amount of Available Inventory

Let
(2.0 o(s.0) = Ele ]
be the Laplace transform of the available inventory at time . Similarly, let
Gils,n) = E[ '],

Properties of the available inventory can be studied in terms of ¢ and &. It may be shown by
using conditional expectations that ¢ satisfies the following differential equation.

ao
a7

Further, & satisfies the following difference equation

/,
(2.2) =\E l" . fn‘ (e =1 F(dx)l.

Iin

)
(2.3) Wls, n+ D=uylsn) + F [(’ ‘/""J:' (et — 1) Fldx)).

Differentiation with respect to s at s = 0, or a direct conditional probability argument, now pro-
duce equations for E[/] and E[/(m)]:

T [
(2.4) AR j:l x F(dx)

and

1tn
Flltn + D]l = ElT)) - F ‘J:‘ \ I’(d.\')].

In general, no explicit solutions for the expected values are available. but a simple lower
bound results from rewriting (2.4) as follows

TR
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d Lo o
(2.5) p Ell]l = -\E ll, j; T Hd\)]

2 ~AElLFUD)
2 -AFUDELL
from which one sees that
(2.6) EfLY 2 exp [-NF()1]
and similarly
EU) =2 101 - FUD)",

so the expected available inventory declines by at most an exponential rate.
2.2. Explicit Solution When the Demand Distribution is Uniform

Although Equation (2.2) seems to be quite intractable for most demand distributions, it
can be solved completely when Fis uniform:

0

N

= ¥ <o
-
Fo=1 1 s

and ¢ 2 [ In this case (2.2) can be expressed as

o0 _ . | ! o dx

2.7 anefe M e - ‘;l
. N

=}\E[l—" e l’]
S S

¢ s ¢ 9s’

A ll_—g»_l LA 8
In other words, ¢ satisfies a first-order (quasi) linear partial differential equation with ini-
tial condition ¢ (s, 0} = ¢ *. Standard procedures (Sneddon [8]) easily yield the solution

L=ty _ 1 =expl=(s + W]

.8)
(28 s s+ (A/e)r

which gives the desired transform. Passage o the limit as s — 0 in (2.8) shows that
Toexpl=/a)ll
N/t

This formula can also be derived by first finding an expression for the A&th moment of [, and
then employing a Tavlor series argument.

(2.9) ElL} =

In order to invert the transform in (2.8) note that

/ 1 - ¢(s.0) 1 - expl-ts + We/eD ]

(210 P > xlde = - T = T - SRR
f" ‘ Pl vl s s+ (Nt

which s the transform of a truncated exponential distribution. Thus, by the unicity theorem
for Laplace transforms,
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expl-A/oxl 0 v <L

(2.11) Pil > x} = 0 1< v

Note that the distribution of /. is absolutely continuous in the interval (0, /) but that there is a
jump at / corresponding to the occurrence of no demand less than, or equal to, /in (0, (]

(2.1 PlL = 1} = expl=Artd/O)].

2.3. The Fxpected Number of Satisfied Demands

Supposing that an initial inventory, or storage capacity, I prevails, it is of interest to com-
pute the probability that a demand is satisfied, and the expected number of demands satistied in
an interval of length ¢ First notice that if a demand of size D{r) appears at time ¢, at which
moment /s avaadable, then

PIDGY < LILY = FU)

is the conditional probability that the demand is satisfied. When Fis uniform, as is presently
true, we may remove the condition to find that

- s LR A AR R e

1 —expl=t/c)]]
Al ’

!,
| PIDWY < 1) = EIFUD) = E|——] =
.

I 50 s the number of demands satisfied during the time interval (0, ], then since demands
arrive according to a Poisson process with rate A

T L _ "I —expl=u/e)l]
(213 Elsil=a [ EFGdu =\ — du
—yn[2] s e[
¢ ¢
where £,{) is an exponential integral; Abramowitz and Stegun [1), and y = 0.5112... s

Fuler's constant.

2.4 The Time of the First Unsatisfied Demand and the Amount
of Unused Inventory at that Time

As before Fis the common distribution function of the successive demands. Now let 7
be the time of the first unsatisfied demand. Then

Plr >N =n)=PD, <L D:<I-Dy ....D, I =Dy = =D, )
= F'"" (D
where F'"" denotes the ath convolution of Fwith itself. Hence,
(214 Plr > )= T v R oy
o) n.

Explicit expressions for the distribution of 7 can be obtained in some cases. 1§ Fis wni-
form on 10, ¢l with ¢ 2 /. then
12
A
B

21% Plr > 1) =¢ “I..IZ

L . - s ——
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where I,(2) is a modified Bessel function of the first kind of the zeroth order. In this case.

(2.16) Elr] = Alexp{l/('] - -;—exp[I/ZE[D]I.
If Fis exponential with mean 1/u, then
oo n oo A
2.17) Plr> )= 3 e 5 o lnD?
n=0 n. h=n I"
and
(2.18) Elrl= Ll +un=1|1+ L]
A A E[D]

Note that if /is small relative to E[D], then the expected time to first unsatisfied demand
when Fis exponential will be greater than the expected time when Fis uniform. However, for
I large relative 10 E[D] the expected time for Fexponential will be less than the expected time
when Fis uniform.

Let Y, be the amount of inventory present at the time of the asth unsatisfied demand.
Then for0 € a </

(2.19) PLY, > 1-a)= [ R FUI - »)
where
(2.20) R»M=3 F" ()
=0
and
(2.21) FU—y)=1-F( - ).

Again, explicit expressions for the distribution of Y, can be obtained for some distribu-
tions F. If Fis uniform on [0. ¢] for ¢ = [, then

(2.22) P{Y,?I—a}=l—ll_” exp[-l—a].
¢ C
If Fis a truncated exponential
| — e
1 — e ! v
(2.23) Fix) = 1 >l
then

224 Py, zl-al=1-fe* =e¢*Tl—-¢ N expluall — ¢ #N1").

If F has an exponential distribution with mean 1/u ., then

(2.2%) PlY,21—-al=¢*"m",

In this last case. the distribution function of ¥, can be computed by induction quite easily and
(2.26) PLY, 2 1 —a)=c '

v
s
g
L

—

¥ /\&'T
*o ¢ -~
[ o

n
~
N

AT
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Hence, when Fis exponential
2.27) ElY,] = -1 [1 = e~
nu

In principle, similar results can be obtained for other distributions, but we have found no sim-
ple expressions.

2.5. Inventory Costs and Policies

There are at least three monetary quantities which affect the profitability of an inventory
policy over a fixed interval of time (0, ¢]: the selling price, p, the storage cost, a; and the cost
of lost demands, b. If the storage cost a is charged just on the basis of / (something like ware-
house size) then the total expected profit in (0,¢] is

Z() = p(I — ElLD) — al = bS(1)
~1
=(p—a)l - p[%! {1 = exp[=(\t/c) 1]}

2|}

for the case of uniformly distributed demands; see ((2.9) and (2.13)). One can numerically
find the maximum expected profit for this case; nothing explicit seems to be available.

-—b['y+ln

3. THE MANY-BUFFER STORAGE PROBLEM

In this section we will study a model for the situation of Example (¢) in Section 1. Mes-
sages are successively admitted to the nth buffer until there is a message length that exceeds
the remaining capacity of the buffer. The total amount of this message is put in the (n + 1) st
buffer and the mh buffer is left forever. Successive messages are then put in the (n + 1) st
buffer until there is a message whose length exceeds the remaining capacity of the (n + 1) st
buffer; this message is put in the (n + 2) nd buffer and so on.

Let 7 denote the common capacity of the buffers and D, denote the length of message /.
Assume {D,} is a sequence of independent identically distributed random variables with distri-
bution F having a density function f such that f(x) > d > 0 for x € [0, /]. Let R(x) = ¥

ne=()
F'"' (x) be the renewal function associated with F. If F(/) < 1, then we will assume that an
incoming message to the currently used nth buffer of length greater than / is sent to the
{n + 1)sr buffer. when it cannot fit into the (n + 1)sr buffer, then it is "banished,” i.e., sent to
some other set of buffers. The next message. however, will try to enter the (n + 1)sr buffer.
If this message has length greater than / it is banished and the following message will try to
enter the {(n + 1) st buffer; all messages of length exceeding / will be banished until one appears
that is smaller than / and it will be the first entry in buffer (n + 1).

This model has been studied for demand distributions F with F(/) = 1 by Coffman et al.
{2}, Their approach was to study the Markov process describing the total amount of inventory
or space consumed in successive buffers or bins. Here we study the process (L,}, where L, is
the size of the demand that first exceeds the remaining capacity of the nth buffer;
{L,, n=1,2, ...} is a Markov process. Let

Kix, [0y =PlL,,, < yIL, = x].
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Note that
P{L, < v} = K10, (0, ]

is the same as the sum of the forward and backward recurrence times at time / for a temporal
renewal process with interrenewal distribution £, see Feller [S]. Thus for y < /

!

3.0 H () = P(L, < v} = f, R IFG) = FU = 21,
Note that for v < [

[
f, R IFGI—FU = x = 2)]

if oy < 1 -y

I

J R R =R -y -

(3.2) K 10,0 = W< < I
/
S R FGY =FU - )
if x>/

Hence.

[R(] —x) = RU —x =) Fldv) ity < |-,

RU — x) Fldy) it >x>1-y.
(33) Ay dv) =1 RO Flar) - f”' RUd) £ = =)+ RGhIF)

fv=171-1)
[R(I) = RUF — )] Fdy) v > [

Note that for some 0 < a < b < [, there exists a 8 > 0 such that for all x
K(xdv) = 8 for v € la, bl
where A7y, dy) = L ) KA (x, d2) Kz dv). Hence, hypothesis D' on page 197 of Doob [4] is
satistied. Thus, if
K'x, 4) = P{L,., € AL, =x)
for all Borel subsets 4. then
34 Iim Ky, 4y = H(1)
cxists and further the convergence is geometric
TR (A4 — HE) ) € ay”
for some positive constants e and y, y < 1 for all .
Now et
Hooo = PHL o xlie, = 0}
Then a renewal argument can be used to show that for v </
(359 H,. t = f//\n“ C R TFO U )
N I IR AT f,I_anll«n) [V EEEN)
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Taking limits as n -+ <o it is seen that the distribution H (x) satisfies the following equation for

1
(3.6) Hx) = f, CH o R [FU) = FUL= p)]
1
+ 1 = H(D] f, R [Flx) = FU = ).

Equations (3.1) and (3.6) can be simplified for certain specific distributions F.
3.1 Exponential Demands

For the exponential distribution with mean 1 and v < [/ the equations are

3.7 Hix)=1—-¢ ‘= xe
and
(3.8) H(x)=xe "HN + Hi(x) — ¢ J:‘ HU — x + u)du.

3.2 Uniform Demands

For the uniform distribution on [0, ¢] with ¢ = [ they simplify to

—]-(I—.\')]-— expll ]
¢ ¢

Y
(3.100 Hix) = l‘expll (- A\')I f cxp‘— i u] H(u)du
¢ ¢ " ¢

RY

(3.9) H,(x) = exp |-

¢

and

) . !
+ X - lcxp[l ] ll -~ i] ) cxpt— 1 u' H () du
¢ ¢ ¢ ¢ Jo ¢

+ 1= H(DY H, (),

for x < I Similar expressions hold for x > [/, but they are unimportant in the present con-
text.

Equations (3.6), (3.8) and (3.10) do not seem to yicld explicit answers. As a result, we
have solved (3.8) and (3.10) numerically by iteration using the system of equations

D H, (0 = xe “HUD + Hi(x) = ¢ ‘ﬂ" H,(I = x + w)du

with M, as in (3.7) and

[
(312) H.. () = lcxp[l - _\-)‘ i) cxp‘—l ul H, () du
¢ C " ¢

. . !
+ X n - lexp’l “l - i, J cxpl~ 1 u] H, G0 du
¢ ¢ ¢ ¢ a ¢

+ 1= H (D] H ()

with /, as in (3.9, For the cases carried out the convergence is rapid, after n = S iterations,
very litde change is noted and convergence has occurred for most practical purposes.
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Next let ¥, be the amount of storage space used in the ath bin: the distribution of Y, is
denoted by (. (x}), and

Gy = lim PLY, <€ &) = lim GL(y)

is the long-run distribution. By probabilistic arguments and (3.4)
(313 Gv) = _f H o RGdv) FUL =30+ L - H(D f RUdv) FUI - )

where F(I — v) =1 - FU/ - v) and the fong-tun average expected capacity of a bin that is
actually used 1s

/
A = f‘ NG Ay

For the case in which F s exponential with unit mean
!

(314 A= 0 D e od.
o
For the case in which £ s umitorm on [0, ] with ¢~/
! {
319 A4 =2 f” HuYdu v exp %.I f” expl— :fu Y du

v HOD 2] (\.‘\p[!/] LS B ‘cxp‘L] .
{ ¢

Numerical solutions were obtained for Equations (3.14) and (3.15) by first computing the pro-

babilities M, (), o= 1.2, . 10 dteratively from (3.7) and (311D for the exponential
demand case, and from (391 and (3121 for the case of uniform demands. Our technique was
simply 1o discretize vox o= g o= 1N N being the number of a-values at which H, tv) s

evaluated fvalues of N from 200-1200 were utilized in order to obtain two-significant digit accu-
racy). The integrals were then appronmuted by a suminaton, e Simpson’s rufe. Having the

values of 1 (v it is possible 1o calculate those of /f (v and from these the values of
G, and the mean usage. F1Y 10 may be calcdluted by numerical integration. in the case of

exponential demand very simple upper and lower bounds were obtainable. such bounds were
not tight enough 10 be usetul tor the umitform case

Fhe folfowing table summuartzes the numernical results. We have compared demand distri-
butions that result, as nearly as possihle. i the same probability that an imiual demand on an
empty bin will be rejected. We have tabulated the expected tevel 1o which the bin s filled. It

1y interesting that the limitng bin occupancy s 0 75 when a unitorm demand over the range of

the bin size is experienced  This result has been obtuned analvtcally by Coffman et al. 12); in
that paper simple and elegant analvbcal expressions for G and H also appear for this case. The
considerable simtlarity of the numbers 1 the tows of the able is notable, apparentdy the long-
run bin occupancy s only shghtly Targer than s that of the first bin, and the occupancy experi-
cenced for unitorm demand s onlv shightly larger than for exponential. Further imvestigations 1o
examine the reasons tor this msensitnaty woukd seem to be of interest
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Expected Fraction of Bin Filled
U, =Er,+0n
Rejection Probability | Exponential Demand Uniform Demand

F) S S N S oo
0.00 - - 0.76 0.75
0.05 0.74 0.75 0.74 0.74
0.10 0.69 0.70 0.72 0.72
0.15 0.65 0.66 0.68 0.69
0.20 0.60 0.62 0.64 0.66
0.25 0.56 0.58 0.60 0.62
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RELIABILITY GROWTH OF REPAIRABLE SYSTEMS

Stephen A. Smith and Shmuel S. Oren®

Analvsis Research Group
Xerox Palo Alio Rescarch Cenier
Palo Alto, California

ABSTRACT

This paper considers the problem of modeling the relability of a repairable
svstem or device that s experiencing relabidity imiprovemient Such a4 situation
anses when system Taiture modes are gradually being corrected by o test-lin-
test-tix procedure, which mas nclude design changes A dynanne relabnihin
maodel Yor this process is discussed and stabistical techmques are derived for ¢s-
umating the model parameters and tor testing the goodness-ol it to absersed
data The rehabilin el analyzed was first proposed as o graphal iechmgue
known as Duane p but can also be viewed as a nonhomogencous Posson
provess with a particular mean value functon

1. INTRODUCTION

Predicting the reliability of a system or piece of equipment during its development process
is an important practical problem. Relability standards are often a major issue in the develop-
ment of transportation facilities, military sysiems, and communication networks. For commer-
cial products that are to be leased and maintained in a competitive marketplace, system reliabil-
ity estimates strongly influence predicted profitability and customer acceptance. When consider-
ing a system that is modified in response to observed failures, most classical statistical estima-
tion techniques are not applicable. This is because the system reliability is improving with time,
while most statistical techniques require repeated samples under identical conditions.

A frequently used graphical model of reliability growth of repairable sysiems is known as
"Duane Plots," proposed by J. T. Duane [9]. This model is based on the empirical observation
that, for many large systems undergoing a reliability improvement program, a plot of cumula-
tive failure rate versus cumulative test time closely follows a straight line on log-log paper.
Several recent papers present applications of Duane plots, c.g.. [4], 19) and [10]). Estimating
the parameters of the Duane model, i.e., the slope and intercept of the straight line fit, is some-
what difficult to do directly on the graph [5]. Weighted least squares and regression techniques
are sometimes used ({91, [10]) to obtain parameter values.

An underlying probabilistic failure model that is consistent with the Duanc reliability
model is the nonhomogeneous Poisson process (NHPP) whose intensity is total test time raised
to some power. (See {7] and {8]). Assuming the sample data consists of all the individual
failure times, Crow [7) derived maximum likelihood estimates for the Duane model parameters
and a goodness-of-fit test based on the Cramer-von Mises statistic (Parzen [12, p. 143]). A
more general NHPP model was proposed by Ascher and Feingold [1], which also used

*Now with Dept of Engineerning T econonie Systems, Stantord Unaversy, Stanlord, €
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the Cramer-von M,cs statistic tor goodness-of-tit testing.  Critical values of this statistic, how-
ever. must be obtained by Monte Carlo simulation for each sample size. Crow [7, p. 403] cal-
culated and tabulated values for sample sizes up to sixty. These parameter estimates and
goodness-of-fit test deal effectively with Duane model applications having small sample sizes.
The tacts that all failure times must be stored and the goodness-of-fit measure must be
evaluated by simulation make this approach difficult for larger sample sizes. A recent paper by
Singpurwalla {13] proposes a time series model for reliability dvnamics. This model can. of
course, be applied to any type of reliability trend data, but requires data tabulation at a larger
number of time stages and does not have the intuitive appeal of the Poisson process for model-
ing failure occurrences i certain systems.

Qur paper develops statistical estimators for the Duane model parameters based on tabu-
lating the number of failures between fixed points in time. This approach has the advantage of
using “suflicient statistics” for the data collection, i.e.. the dimension of the data does not
icrease with sample size. Parameter estimates are obtained by maximum likelihood and a
poodness-ot-tit test based on the Fisher chi-square statistic is derived. This test has the advan-
tage that chi-square tables are readily available tor all sampie sizes and significance levels. The
accuracy of the chi-square test decreases. however, as the sample size gets small. Sample sizes
for which the technigues of this paper apply are found in developmental systems that experi-
ence frequent, minor tailures such as paper jams in photo copy machines, voltage fluctuations
in power supply systems, faults in semiconductor manufucturing processes, ete. The last sece-
tion of this paper itlustrates the apphication of the estimation and goodness-of-fit techniques 1o a
representative set ol simulated failure data.

Regardless of how the parameters of the Duane model are obtained. considerable caution
is required when extrapolating reliability trends beyond the observed data to future time points.
Major breakthroughs or setbacks in the reliability improvement program may cause significant
deviations from the straight line projections. Some users recommend reinitializing the model
and shifting 1o a new straight line fit when major changes in the program occur. Even if one is
uneasy about extrapolating the reliability growth model to estimate future reliability, it remains
a valuable tool for obtaining a "smoothed” estimate of current system reliability. While reliabil-
1y s changing, sample stzes at any point in ume are not suflicient for conventional statistical
estimation technigues. With a dynamic reliability model. past and current failure data can be
combined to obtain estimates of current reliability based on fitting all observed data.

2. THE DUANE MODEL

The Duane model states that cumulative failure rate versus cumulative test time, when
plotted on log-log paper, follows approximately a straight line. Maore precisely, if we let N (0,r)
represent the total number of failures observed up 1o time 1. we have thai

Q2.1 logiN OO/ e) = — blogr + a,

where the fitted parameters are a, b > 0. The relationship is meaningless at ¢+ = 0 but, as most
users point out (1519, a certain amount of early data is generally excluded from the fit
because 1t is influenced by factors such as training of personnel, changes in test procedures, ete
Fquation (2.1) therefore implies that

N~ ar *, where a = log a,

tor r besond a certain point. It should be emphasized that, in all applications, time ¢
corresponds to cumulative operating time or test time. For the results of this paper 1t 1s most
convenient to write the Duane model as:

(2. Moy ot where g =1 b
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For a fairly diverse set of observed systems, Codier |5. p. 460} has found b to be generally
between 0.3 and 0.5, corresponding 10 8 between 0.5 and 0.7.

3. AN UNDERLYING STATISTICAL MODEL

In this section we describe a statistical model for the failure process that is consistent with
assuming that the observed failure data fits the Duane model. Suppose the probability that the
system fails at time ¢ (strictly speaking in a small interval [r,r + dr)), regardless of the past, is
determined by a hazard function #(¢r). That is,

h{Ddr = P lthe system fails in the intervallrs + do)i.

independent of its previous failure and repair history. The expected number of failures in any
time interval [7,.7,) of operating time is then given by the mean value function

(3.1 My =

1
Furthermore, it can be shown (See Parzen [12, Sect. 4.2]) that N(s. 15). the number of
failures observed in some future time interval {7y, 1,). has probability distribution

(3.2) PINGLG) = k) = (M Gy i) IVED expl=M Gl A =001.2, ..

In addition to its mathematical convenience, this model has considerable intuitive appeal. The
simple Poisson process has been used successfully to model the failure occurrences of many
devices, or collections of devices operating in series. One may think of a system having a
nonhomogencous Poisson failure process as a large collection of simpler devices in series, with
individual device failure modes being gradually removed with time.

The mean value function
(3.3) MG, 1y =aUf —1f), wherea, B > O

corresponding to #1{r) = aBr” ' is of particular inmerest. Crow [7. p. 303] painted out that the
number of failures from a process with this mean value funcion will approximate the Duane
Model by observing that

logIM() /1] =loga + (8 — 1) log r, where M} = M, 1),

This means that system failure data from a NHPP with mean value function M (1) will approach
the Duane model with probability one. Conversely, this process with mean value function
M (t) is the only model with independent increments that approximates the Duane mode) in a
probabilistic sense for sufficiently large sample sizes. We will not give a proof of these state-
ments but refer the reader 1o Parzen {12, ch. 4] or Donelson [8] for 4 complete discussion.

4. SELECTING A STARTING TIME !

The Duane reliability model and the expected number of failt-res in Fguation (3 3) are !
both nonlinearly dependent on the choice of the time origin. That s, 1f we begin observing ‘
failures at time ¢ = ¢, > 0 and ignore the first N (0, 1)} failures and the time interval [0, 7). we
do not obtain the same parameters a and 8 by fitting the subsequent data. Since the logarithm
is a strictly concave function, there is only one choice of 7, that can give a straight line fit 1o the
data on log-log paper. Specifying the operating time 1, that is assumed to have clapsed betore
the beginning of the modeling process is therefore an important step.

Some users of the Duane Model ([S1{10D) suggest reducing the cumulative failures and !
observation time by removing carly data to obtain a straight line fit. This is done graphically by




. . RN
ol oplothing the data untl oa straight line fit s
. “oostape ol the graph ol cumulative failures versus
s dewnwgrd hending (concave). so it is not hard to
. Cd
N S st e rend on og-log paper is observed before the noisy
e t et s smitted turther 1o the night. the straight line shape will
AT . : Toomost that can be said i this case s that, for ¢ greater than
wn S De model The statisiical moded (3.3 can still be applied. how-
R T TN .. < camiber of twlures M) after the fisst N0, fit the NHPP
Wi L oo

SOESTIMALING THE MODEL PARAMETERS

It the Duane mod- s apphed graphically . the user can attempt 1o estimate the parameters
a and g by drawaing the best straight hine through the plotied points. This is somewhat tricky
because. with cumulative twlure data. the later points should be weighted more heavily in
determuming the it This secnon describes a statistical estimation procedure based on the
NHPP model of the tadure process. We consider two possibilities for collecting and recording
system failure tmes. The tirst is 1o record the occurrence time of each failure, which yields a
sequence of observed umes T, 7. ..., Ty. This case has been analyzed by Crow in [7] and
the maximum likelihood estimates are given by

(5. at = N/TEC

and

\
(5.2) B*= - N/Y log(T/Ty).
el

A goodness-of-it test corresponding to these estimators is derived in [7] and critical values of
the error statistic are tabulated for sample sizes 2-60.

If kurge numbers of failures are observed, it is often convenient to record only the aggre-
gate number of failures between each pair in a sequence of fixed time points 1. 7y, ... . ¢,. In
this case the data is in the form N, N, ... N, where N, = number of failures observed in
the interval lr, |, ¢). Maximum likelihood estimates and a goodness-of-fit criterion for obser-
vations in this form are developed in the next few paragraphs.

Maximum Likelilhood Estimates for the Aggregated Case

We first calculate the likelihood function for the data Ny, N,, ..., N,. given the time
points ty, £y, ... . «, and the assumed form of the mean value function in Equation (3.3). The
probability of A, system failures in the interval {1, |, ¢,) is obtained from Equation (3.2). Since
the underlying model assumes that each of the time segments is independent, the likelihood
function can be written as a product of these probabilities,

(5.3) L) = [T PING, 1) = N) = expi=M o)) [T UM G, 1 i1 AD.
cw] il

To simplify the calculation of the estimators, we take the log of L (a, 8). noting that max-
imizing the log will yield the same maximum likelihood estimates. From (5.3) we have

”n n
(5.4 log L, ) = —aUrf — (f) + z Nlloga + log (1F = 1P )] - zlog NI

=1 |
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Taking the partial derivatives (dlog L)/d« = 0 and (3log 1.}/88 = 0. we obtain the equations
for the maximum likelihood estimates,

(5.5) a*=N/UuP = 1f7). where N = >N
-1
" log 1, — p,log1t log 1, — log 1
(5.6) 0=y |2 Lkl BN CRoORD
i=1 1 —p, 1 —py
where

p,=G /P i=1,2 ... and po= G,/ 1)

Equation (5.6) is an implicit function of 8* but can be solved iteratively by a computer algo-
rithm or programmable calculator, because the right hand side is strictly decreasing in 8% To
verify this fact, consider any two times 4 /' and compute the derivative

(5.7 @/8p) Mlogr — THlog t'1/11 = TPl = - TW0og TY/(1 = T™)Y'. where T = 1/1.

This derivative is negative and decreasing in 7for 0 < 7.8 < 1. The derivative of the sum in
(5.6) is a sum of terms involving the difference of the derivative (5.7) evaluated at 7 =, /¢
and ¢,/r,. The fact that (5.6) is decreasing in 8 * follows from the fact that (5.7) is decreasing
in 7, i.e., its largest or least negative value occurs at T = r,/r,. Therefore, (5.6) has a unique
solution.

6. GOODNESS-OF-FIT CRITERION

This section describes a procedure for testing the goodness-of-fit of the observed failure
data 10 the NHPP. We assume that the parameters « * and 8 * are obtained trom the maximum
likelihood estimates (5.5) and (5.6). From the form of (5.5) it is clear that the estimate a * s
defined in such a way that the total number of observed failures N always equals the expected
number of failures for the time period {7,. 7,). That is, a *is defined so that

N=FE{Nla*B*)=a*f" - ).

Therefore, there is no difference between the observed versus predicted ol number of
failures. The goodness-of-fit measure must therefore be based on the differences between the
observed incremental failures Ny, N,, ..., N, and the predicted values

6.1) EINJa* B =a*(/ =), i=1.2. ..., n

Assuming the estimate (5.5) is used for « * the likelihood function for a goodness-of-it
statistic will be expressed only in terms of 8% Since the NHPEP has independent iacrements.
the probability that a given failure occurs in the interval [r, 1. 1) is the expected number ol
fatlures for that interval, divided by the 1otal number of failures, This is written as
(6.2) po=pB = la* G/ = ) a0 - Y =12,
where the a® parameter obviously cancels out. The likelihood function for a set of observed
failures N\, N, ... N, given N, is therefore the multinomial

‘N, I\l v, \‘ ’ ! . .
N No o N Mmooy ooop, . where N+ N+ 4 N o= N,

"

which depends only on 8* The parameter « * can be regarded as a scale parameter that guaran-
tees the model will fit the total number observed of tailures N
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We now show how the goodness-of-fit of the incremental failure data can be measured by
the Fisher chi-square statistic

6.4) x" =Y (N — Np)/Np,.

=1
The use of this statistic as a goodness-of-fit measure is based on the following theorem, which
has been restated in the context of this discussion.

THEOREM 6.1 Let the parameters py, py. ... p,. with Zp, = 1, be functions of a param-
cter B8 and let a particular value 8 be determined from

(6.5) 0="% (N/p)@p/dB) _—
, 8 =

Then the statistic (6.4) with p, = p(B), i= 1,2, .... a has approximately a chi-square distri-

bution with n — 1 degrees of freedom (x*(n — 1)) for large N. The proof of this result is quite

lengthy and can be found in [6, pp. 424-434].

To apply this result 1o our particular problem, we must show that 8' equals the estimator
B * detined by Equation (5.6). Using p,(8) as defined in Equation (6.2), and differentiating
with respect to 8, one can verify that Equation (6.5) reduces to Equation (5.6). Thus, 8'=8"*
and. since (5.6) has only one solution, the value is unique.

The chi-square error statistic (6.4) has an additional intuitive interpretation for this appli-
cation. Suppose « and 3 are the "true" parameters of the underlying nohomogeneous Poisson
process, i.e.. the values to which the estimators « * and 8 * must eventually converge for very
large sample sizes. Then the “true® variance of the number of observed failures in lr, |. 1,).
i.c.. the limiting value for the sample variance of a large number of observations, is given by

VarlNla. Bl =atf | =Py i=1,2, ... n

Consider Wia* g*) =Y (N, — E{(Nla* B*D/Var(Nla. ).

r=1

which 1s the sum of square errors between the observed and estimated failures, weighied by the
true vanance for cach of the time intervals. Suppose we minimize this with respect to a * and
B by solving (B da*) = 0 and (@W/3B8*) = 0. If we then substitute our "best estimates”.
a*for a and 3 *tor 8. these two equations reduce 1o the maximum likelihood equations, (5.5)
and (5 6) respectively. Birnbaum (2, p. 251-2] also points that if we minimize the chi-square
statistic (6.4) with respect 10 8, the estimate obtained must approach the estimate g° that
satisfies (6 5) as the sample size approaches infinity.

This goodness-of-fit criterion measures, in effect, how well the observed data fits a NHPP
with mean value function M (1), where 8 *is the "best” growth parameter for the observed data.
It the X"‘" - 1) statistic (6.4) exceeds the critical value at a reasonable significance level. such
as 0.05 or 0.1, the model should be rejected. Since Theorem 6.1 gives only an asymptotic
result, it is important to discuss the sample size requirements for applying it. Given the popu-
larity of this test, there has been considerable experience with various types of data A com-
mon criterion is that N and, in this case the time points 7, 7. ... . 1,. must be such that
Np. 2 10 for all 1. (See Birnbaum [2, p. 248]).

i
h
3
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7. APPLICATION EXAMPLE

As an illustration, we will determine the estimators « * and 8 * and apply the goodness-of-
fit test to the sample data in Table 1. We assume that the failurcs of the system were only
monitored at fixed points of time so that the observed data consists of the first two columns of
the table. These data points were generated by computer simulation with failures sampled from
a NHPP with mean value function M (1), having parameters a = 10.0, 8 = 0.5, Fatlure times

T.,. T,, ... from this distribution can be generated sequentially from a set of random samples
U,. U,, ... from the uniform distribution by means of the transtormation
(7.0 To=1T = (Yadlog U, )", Toy=0., i=0.1,2 ...
TABLE |
Time lnterval Observed Prgdicled Sumdz':rd Normulizcda
Failures Failures Deviation Error
1| 400 - 800 63 78 88 | 2.88
2 800 - 1200 63 61 7.8 0.07
3 1200 - 1600 54 51 7.1 0.18
4 1600 - 2000 51 46 6.8 0.54
S 2000 - 2500 68 51 7.1 5.67
6 2500 - 3000 49 46 6.8 0.20
7 3000 - 3500 34 43 6.6 1.88
8 3500 - 4000 39 40 6.3 0.03
9 4000 - 4500 19 38 6.2 0.02
10 4500 - 5000 43 36 6.0 1.36
11 5000 - 5500 39 34 58 0.74
12 5500 - 6000 36 33 8.7 0.27
13 6000 - 6500 28 31 5.6 0.29
14 6500 - 7000 22 30 S.5 213
15 7000 - 7500 35 29 5.4 1.24
16 7500 - 8000 2 28 5.3 0.57
17 8000 - 8500 22 27 5.2 0.93
18 8500 - 9000 19 27 52 237
19 9000 - 9500 19 26 S | 88 i
i 2325 |

The data in Table | was used 1o obtain maximum likelthood estimites o« * and #° from
Eqguations (5.5) and (5.6). This was done by calculating various values of the night hand side
of (5.6) as a function of 8 until the minimizing value 8* was determined 1o twe decimal places
This gave 8* = 0.52 and « * = 7.97, where o * was determined from (5.5) with g* = 052

The accuracy of B *is reasonably clos2 to the correct value g = 0.3, but the estimate of o *
is off by more than 20%. Other calculations with different scis of random numbers produced
errors in both directions but generally resulied in an o * crror several times larger than the 48°
error, on a pereentage basis. This seems 10 indicate that one s more hhely 1o estimate slopes
of the Duane Plot lines accurately than to estimate the mtercepts accuratehy with the masimum
likelithood estumates. Naturally, as the number of observation poimnts i Fable 1 as increased.
the estimates become more accurate.  Accuracy was not improved much by increasing the
number of time ponts from 20, as shown in the table. 1o 100 and the sign of the error fot a
given example generally did not change as the number of observaton pomnis was increased.
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while holding the underlying failure points fixed. Bringing the estimate a * to within 5% of the
correct value typically required 300 1o 500 observation time points for the computed examples.

To illustrate the use of the goodness-of-fit test we calculate the chi-square statistic (6.4)
for this table. The "Predicted Failures” between the various time points are given by

Np =a*Uf] =18, i=12....19
The normalized error terms as in (6.4) are given by
(N — Np ¥/ (Np).

The sum of these errors, when compared with a x"HR) error table. is less than the critical
values 25,99 and 28 .87, associated with significance levels 0.1 and 0.05. respectively.

For many applications of the model it is more important 10 predict the number of failures
that will occur in the next time period than (o obtain accurate estimates for « and 8. In such
cases the estimators obtained from 10-20 time points appear to be sufliciently accurate. This is
because there is a range of «. B pairs that provide almost as good a fit to the observed data as
the optimal ones and any parameters in this range provide a satisfacteny predictive model.

To illustrate the prediction accuracy of the estimates B* = 0.52, « * = 7.97 obtained from
Table |, we generated simulated failures out 10 40,000 time units. The number of failures
predicted by extrapolating with the estimated parameters and with the true parameters are com-
pared in Table 2. The errors in predicting failures caused by inaccuracy in estimating the
parameters is much less than the random errors that occur duce to stochastic variations of the
failure process. This was found to be the case in several sim ‘ar experiments.

TABLE 2
Time Interval Sifn.ululcd ‘I{sllmulch ; True ‘ Standard |
Failures Extrapolition Extrapolation Deviation |
9500 - 10,000 24 28 28 S0 1
19500 - 15,000 235 251 250 158
93500 - 20.000 412 343 439 210
9500 - 30,000 718 T66 787 : 278
9500 - 40,000 999 1041 1028 ! 320 !

8. CONCLUSION

Choosing the fixed time points between which to tabulate falures 1s mainly @ question of
engineering judgement. The time points might be selected, for example, to correspond to mile-
stones in the reliability development program. The parameter estimates and goodness-of-fit
tests obtained 1n this paper and those obtained by Crow are ¢ssentally complementary with
respect to various applications of the Duane model. It is not possible to determine the precise
sample size at which one approach becomes more advantageous than the other  Based on
experience, the chi-square goodness-of-fit test tends to reject most sample data, including data
that fits the model. when sample sizes are ton small. Therefore. rejection of the model by the
chi-square test, based on data with a questionable total number of samples. might be viewed as
inconclusive and the more accurate test developed by Crow could then be applied  For large
sample sizes that have at least 10 failures between time poimts. the chi-square test should be
accurate and s computattonally easier. Data that fails to fit the NHPP model with mean value
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function M (¢) based on these tests requires a more general approach. A NHPP model with a
different intensity such as discussed in [1]. or a less constrained model such as [13] might then
be tested.
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ABSTRACT

An approach 1s presented tor obtwming the moments and distribution of the
optimal value for a class of prototype stochastic geometnie programs with fog-
normally distributed cost coeficients 1t s assumed tor cach set of values
taken on by the cost coefficients that the resulting determnistic primal program
Is superconsistent and sotuble 1t s also required that the corresponding dual
program has o umigque eptimal pomnt with all positive components 1t s indicat-
cd how ane can apph the results obtamed under the above assumptinns to sto-
chastic programs whose corresponding deternumisue dual programs need not
salisty the gbove-mentioned umqgueness and positivaty requirements

1. INTRODUCTION

This paper is concerned with deriving the distribution and/or moments of the optimal
value for a class of stochastic protolype geometric programs in which a subset of the cost
coefficients are lognormally distributed. The iograms are assumed to be superconsistent and
soluble for all positive values that can be taken on by the cost coefficients. It is also required
that the dual of a program has a unique optimal point, & , with all positive components, for all
possible values that can be taken on by the components of the cost vector ¢. Such programs
include soluble programs with no forced constraints. Also included are superconsistent soluble
programs whose forced constraints are nonredundant (and hence active at optimality) and
whose forced constraint gradients are linearly independent at optimality, for each positive-
valued cost vector ¢.

The class of problems specitied above. while of interest in themselves, can be used 10
obtain the distribution and/or moments of the optimal value for more general classes of sto-
chastic prototype geometric programs. This will be indicated in Section 6.

The distribution and/or moments of the optimal valuc of a stochastic program will be
expressed in terms of the density function of a vector L A (log K. log K, ..., log K},
where log denotes the natural logarithm function, d is the degree of difficulty of the program,

and

*This research was supported 1n part by the Office of Naval Rescarch Contract NOOO14-75-C-0254
tNow with U'S Army Materiel Systems Analysis Actvitn, Aberdeen Proving Ground, Maryland
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log A = z podog o tor g {00 )
o=
In the above (¢, .., ¢,) is the vector of cost coeflicients (where “*“ denotes transpose} and

the &' ' are constants that are independent of the c,.

One advantage to dumng the distribution and/or moments of the optimal value in terms
of the deasay funcuon of L is that the vec s normally distributed when the stochastic ¢
are jomntly lognormally distributed.  Furtheri, ¢, under certain condittions. 1t 1s reasonable to
expect that £ behaves approximately as it the vector of stochastic cost coeflicients were lognor-
nutlly  distributed even when it is not. More precisely, if the stochastic cost coeflicients.,
Lo« 1Y are positnve-valued and the variates {log o 1i € 7} are independent with fimite means.
varanees, and third order absolute ccnlrul moments, then one can apply @ centrat imue theorem

O

for random vectors to the relation [ Z 7" where 2" AT g b T log L b
- .

fog ¢ ) [11] Thus. under the above conditions, one might expect that [ tends to be normalhy

distributed provided the stochastic ¢ are positive-valued. strictly umimodal, continuous van-

ates; the number of indices in Fis “large” in comparison to ¢ + 1. and no partial sum of  + 1

of the Z'" is "eacessivelh” dominant in the sum for L.

I'he results of this paper should be of interest in instances where the operating or con-
struction costs assocuated with a contemplated project or engineering system can be adequatels
approximated as the optimal value of 4 stochastic prototype geometric program with lognormalh
distributed cost coetlicients  In such cases @ knowledge of the distribution function and/or
moments would be useful as a predictive tool in financial planning  For instance. it the distri-
bution function of the optimal value were known one would be able to predict with a given pro-
bability that a proposed system’s operating or construction costs incurred over a given period
would lie within a specified set of limits,

To reflect the uncertainty as to the future costs, ¢, that will be encountered during the
construction or operating period of interest a cost analyst often subjectively chooses a distribu-
tion for cach cost ¢. Cost analysts have frequently found families of positive-valued random
variables that are continuous and strictly unimodal useful for this purpose [9]. The lognormal
random variables form a two parameter family that meets these specifications. Recall a random
variable Y is said to be lognormal iff log Y is normally distributed. Properties of lognormal ran-
dom variables can be tound in 2]

Cost analysts are most often concerned with the distribution of values of ¢ about a central
value and not with tail values. Thus. an analyst who wishes to utilize the present results might
proceed to express his uncertainty about the future value of cost coeflicient ¢, as follows:

1. Assume ¢ is lognormally distributed and subjectively choose the median value of ¢
denoted by €

2 Spearfy an terval of interest about ¢ of the form (0. 1€, 0 6) where € (1, o0).
3 Subjectively choose 8 € (0, 1) such that | — 8§, reflects one's belief that ¢, € (0, "¢ .

#.&). te. the more confident one is that ¢ ¢ (8 '¢ A€ ) the closer | = & should be chosen
to {




OPTIMAL VALUE OF STOCHASTIC GEOMETRIC PROGR AMS 551

4. Calculate the unique value of the standard deviation of ¢, that is consistent with (1)
and the equation Pr(8,'¢, < ¢, < 9,£,) =1 — 8, where Pr denotes the probability function
associated with ¢,.

Results of the paper do not require that the stochastic ¢, be independently distributed.
Thus, for every pair of stochastic cost coefficients ¢, ¢, (i # j) the analyst may subjectively
choose a number between —1 and 1, the correlation coefficient p,, of log ¢; and log c¢,, to reflect
his opinion as to the interdependency of ¢, and ¢,. The theory allows for the possibility that
p; = =1 (i.e., with probability 1 ¢; = ac® for some constants a € (0, o) and B € (~co, w0)).

In Section 2 the notation used in connection with the deterministic and stochastic
geometric programming problem and its dual and transformed dual is presented. Also the spe-
cial role of the transformed dual program in obtaining the distribution and/or moments of the
optimal value of the primal program is indicated.

Section 3 presents and discusses the assumptions placed upon the primal program
throughout Sections 3 through 5 and the appendices. Additionally. useful properties of the
density functions of L and L A (log Ky, ... . log K,)’ are stated.

In Section 4 we use the density functions of L and L. together with the maximizing equa-
tions for an unconstrained transformed dual program, to obtain the density functions of r and
(r,v(P,)). Here r denotes the random vector of the optimal point of the unconstrained sto-
chastic transformed dual program and v(P,) denotes the optimal value of the stochastic primal
program. We then obtain the density function of v(P ) as a marginal density of (r,v(P)).

In Section 5 we use the density function of r to derive a formula that expresses each
moment of v(P.) as the integral of an explicitly given integrand over an explicitly specified con-
vex polyhedral subset of R, where d is the degree of difficulty of the stochastic primal pro-
gram.

Section 6 briefly indicates how the preceding results can be used to calculate the distribu-
tion and/or moments of v(P ) when P, need not satisfy all the assumptions of Section 3.

Appendix A conltains the statement and proof of a lemma from which important proper-
ties of L and L immediately follow. These properties are stated in Theorem 1 of Section 3.

Finally, in Appendix B we establish that boundedness of the dual feasible set is a
sufficient condition for the existence of all the moments of v(P), under the assumptions of
Section 3.

2. NOTATION AND PRELIMINARIES

We shall now review the definitions and notation used in connection with prototype
geometric programming that will be utilized in the paper. In the following, for every positive
integer v, <v> A{l, ..., v)and <&> A (0,1, ..., ¢v]. Also. for every matrix P, P’ denotes
the transpose of P. All elements of Euclidean n-space. R, will be viewed as column vectors of
n real numbers and the zero vector will be denoted by ().

Recall a prototype primal geometric program has the following form (4] inf g,(1) subject
tog () < 1Vx€<p>ands >0V i€ <m>wherer=1(r, ..., and g (1) A Y ¢

e d

e n At i

i
]
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m
o “ . . . .

[1:" forx € <p>. In the above 4 = (a,) is an n by m matrix with real entries called the
r=1

exponent matrix and ¢ = (¢, ... . ¢,)"is a vector of positive numbers called the vector of cost
coefficients. Also. J, A {m.m.\, ..., nd where my=1m,=n,;+1forx € <p>. and
n, = n. The constraints g,.(¢) < | are calied forced constraints and we allow the possibility that
a primal program has no forced constraints.

In this paper we shall be concerned with problems of the above form when some or all of
the cost coefficients are stochastic variables that are lognormally distributed. Thus, we shall
assume there exists / C <n> such that I # ¢ and i € [ iff ¢ is stochastic. Let
Al ¢ ) where iy < ... < i, and [ = li.lv € <w>}. Thus, ¢ is « random vector
formed from the stochastic cost coefficients. Values taken on by ¢; will be denoted by ¢;. Also
¢ will denote the value taken on by cost coefficient vector ¢ when ¢, takes on the value ¢;. We
shall let P and P denote the corresponding stochastic and deterministic prototype primal
geomelric programs. Furthermore, v( P ) will denote the optimal value of P and v( P ) will
denote the stochastic variable that takes on the value v( P.) when ¢, takes on the value ¢;.

The stochastic program P. is notl convenient to work with due to possible randomness in
coefficients of the forced constraints. To find computationally tractable bounds on the solution
of a two stage geomelric program with stochastic cost coefficients, Avriel and Wilde [3] con-
sidered the stochastic problem D, in place of P, where, for every ¢ > 0, D. is the dual of P as
given in [4]. The stochastic program D, has the allractive feature that all its randomness 1s

confined to the objective function. To see this recall D is the following program: sup n
=]

N N
n : A o) , . .. . .
(¢,/8)) [I )\,(8)“’ subject to the normality condition Z 8, = 1. the orthogonality conditions
w1 =1
"
Z a,d, =0 for j € <m>_ and the positivity conditions 8, > 0 for / € <n>. In the above.
i =1
for every k € <p>_.A.(8) A 2 8, ford € R" Also, in evaluating the dual objective function
Ty

one uses the convention that x*= x"'=1 for x = 0. When P. has no forced constraints we

. . ld s
set p = 0 and define the expression H )\K(S)A‘ "o be 1.

k=1

Under rather general conditions one has v(D ) = v(P) for ¢ € R’ [4, Ch. 6] (where R".
denotes the positive orthant of R” and v(D,) denotes the optimal value of D). This s irue.
e.g.. if P is superconsistent and soluble [4, Ch. 4]. Thus. frequently the distribution function
of v(D ) will be the same as that for v(P ), where v(D,) denotes the stochastic variable that
takes on the value viD ) when ¢ takes on the value ;. Obtaining the distribution function
and/or moments of v(D ) is facilitated by the fact that the constraint region for D is a
polvhedral convex set that depends only on the nonstochastic exponent Matrix 4.

Instead of working directly with D we shall use the transformed dual program, 1.)‘, con-
sidered in [4, Ch. 3]. Recall D is obtained from D by solving the normality and orthogonality
constraints of D .

In what follows we shall assume without loss of generality that the rank of A4 is m and that
¢ € R"is not in the column space of 4, where ¢, = 1 if i € nyand ¢, = 0il 1 > n, (see 14,
Ch. 3]). As in 14} we define d 10 be the dimension of the solution space of the system of equa-
tions 4% = 0. ¢'8 = 0 (Recall dis called the degree of difficulty of P and, under the above
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assumptions, equals n — m — 1.) Throughout the paper we assume ¢ > 0. (The distribution
problem for v(P,.) when 4 = 0 has been studied by R. Stark in [13].) In accordance with the
terminology in {4], we define N A {6"/'] j € <d>} to be a nullity set for P, iff Nis a basis for
the solution space of the above homogeneous system of equations. Also '™ € R” is called a
normality vector for P. iff 46" = 0 and ¢’ = 1.

¢

Let N A {b"Y) j € <d>} be any nullity set and 6" be any normality vector for P

o
Note 8 € R” satisfies the orthogonality and normality conditions for D_iff 5 = 6" + ¥ r 4"’
e
o
where the r, € R' are uniquely determined by 8. Thus, by replacing 8, in Dby 4" + )3
cs

r,b'") we obtain the equivalent transformed dual problem D~,:

I[,I)\,‘(r)
k=1

subject to the positivity constraint Br 2 ~b"" where r A (ry, ..., r,)" (the vector of basic
variables). In the above {K(c.6'')| j € <d>] is called a set of basic constants for P

i t -
(corresponding to N and 5"') where K (¢,6""") Alc forj€ <d>. Also. Bisthe nby d
1=
matrix whose jllh column is b"' for j € <d>. Finally, for i € <n> and x € <p>.
8.0 AB"+ ¥ r b and A (r) A ¥ &(r). When P has no forced constraints we define

=1 e d,

2 A_tr)
n)\x(r) 1o be 1.
x=1

-8, At

d n
sup K(@6'™) T] K(@b6"") T 5.(r)

1=1 =1

Note that the parameters in 1} depend on the choice of nullity set NV and normality vector
6" However, as v(D ) = v(D) for T € R% (where V(D) denotes the optimal value of D).
the optimal value of D. is independent of the choice of N and b Thus, for any nullity set N
and normality vector 6™ for £, the distribution function of V(D) is identical 1o the distribu-
tion function of v(D,), where v(D,) is the stochastic variable that takes on the value v(D) )
when «; takes on the value ¢,.

To obtain the distribution tunction and/or momenis of v(D,) we shall first obtain the
density function of the random vector L ALyLy, ... Ly and L ALy, .., L,) where,
for j € <d>. L, is the random variable that takes on the value log K (Z,b'"") when ¢, takes on
the value ¢,.

3. On the Density Functions of L and L

Unless otherwise stated, throughout the remainder of the paper we shall assume the fol-
lowing:

() {e,lv € <u>) is a set of positive-valued random variables such that, for eve:y

13 A i .
i€ <n> ¢ =« [] e for some a, € (0, ) and B, € (-oc0,00) » € <u>_ Further-
=t
more, it is assumed that (log e;, ..., log ¢,)" 15 a nondegenerate normal random vector with
mean vector u = (u,, ..., u,) and dispersion matrix A:

(2) There exists a nullity set [('7]j € <d>) for P such that {3'"']) € <d>)is linearly
independent where §" A 86" for j € <d> and B is the n x u matrix whose (i, /) entry is
B, -
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{3) For ¢.... -ulue ¢ that ¢ takes on the program P is superconsisient and soluble;

(4) For every value ¢; that ¢, takes on the program D, has a unique optimal point 8  and
5. > 0.

Many of the results obtained under the above restrictions form the basis 10 approaches for
calculating the distribution function and/or moments of v(P.) under less restrictive assump-
tions. This will be briefly indicated in Section 6.

Assumption (1) allows for the possibility that a cost coefficient ¢, is constant (8, = 0 for
all v € <u>). Also, (1) permits one to conveniently work with a vector of stochastic cost
coefficients ¢, = le,. ..., ¢ )" for which (log ¢, . ..., log ¢, )" is a degenerate normal random

vector. Degeneracy would occur, e.g., if ¢, and ¢; where components of ¢, such that ¢; = acf
for some a € (0, ) and B € R'.

To evaluate the mean w, and variance ol of log e, a cost analyst could apply steps (1)
through (4) of Section | te ¢, in place of ¢,. After choosing £,, the median of ¢,, and the vari-
ance of e, by these steps the values of i, and o ? can easily be calculated [2].

Note Assumption (2) is satisfied if © = nand ¢, = e, for every i € <u>. Also, if there
exists a nuility set of P, that satisfies (2) then every nullity set of P, satisfies (2) (Proposition
.

Recal), for ¢ € R%. P is called superconsistent iff there exists 1 € R™ such that 1 > 0
m
ELTV I Y H 1,'” < | for every k € <p>. Also, P is called soluble iff P. has an optimal
e d r=A
point. It can easily be shown that P. is superconsistent for all © € RY iff there exists a linear
combination of the columns of A4, say x, such that x, < O forall i € J,, x € <p> [1,p. 329].
Alternately, one can show that P. is superconsistent for all ¢ € R% iff the set
(8€ R85 =20V i€ <n> A4%=0,and ¢'6 = 1} is bounded [1, p. 329]. Moreover, if the
above set is bounded and contains a point 8 > 0 then P. will be superconsistent and soluble for

¢

every ¢ € R’ (by [4, p. 120, Th. 2] and [1, p. 329)).

Assumption (3) implies that v(P) = v(D,) for every value ¢, taken on by ¢, ([4, p. 117,
Th. 1]).

Assumption (4) holds for ¢ € R% if P_is soluble and has no forced constraints. More
generally, one can show (4) holds at ¢ € R% if P_is a superconsistent soluble program whose
forced constraints are nonredundant and whose forced constraint gradients are linearly indepen-
dent at optimality. By nonredundant we mean that the optimal value of P _is greater than the
optimal value of P, for every x € <p>, where P_ denotes the program obtained from P,
by deleting forced constraint k.

If the components of L form a set of independent random variables then we obtain a
d

simpler formula for the density function of L since, in this case, g(/, ..., ) = [] &)
-1

!
where g is the density function for L and g, is the density function for L,. If, in addition, L is
independent of the components of L then the calculation of moments of v(P ) is simplified.
This follows from the fact that one can express v(P.) as the product e "w(r) where w is a
known function ¢t a d-dimensional random vector r whose density function can be calculated

S pl g by n s bttt
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from that of L. Thus, when L, is independent of L we have E*(v(P)) = [E* (") [E* (wir)))
where E*(Q) denotes the vth moment of random variable Q (whenever this moment exists).
If Ly is a linear function of the components of L ofie can obtain a function @ of r such that
v(P,) = &(r) from which one can calculate E*(v(P,)). It will be shown, under the previously
listed assumptions, that one can always find a nullity set [6"']j € <d>) and normality vector
b® for P. such that Lg is independent of L if §'” ¢ span {5V'|j €<d>) and L, is a linear
function of the components of L if 5 € span {§V']j € <d>)} where §'”’ A B'5'% and 5'” is
any normality vector of P,.

Theorem 1 indicates how to obtain a nullity set for P,, {b''']j € <d>}. such that the
components of the corresponding random vector L are independent normal variates whose
means and variances are known. Also, using the above nullity set, it is shown how to obtain a
normality vector for P, ', such that if §'© @ span [3V']j € <d>) then the components of
the corresponding random vector L are independent normal variates whose means and vari-
ances are known. The proof of Theorem 1 follows immediately from Lemma A which is stated
and derived in Appendix A. The proof of Lemma A uses the eigenvectors of the dispersion
matrix A. Fortunately, however, the calculation of the above-mentioned nullity set and nor-
mality vector and the calculation of the means and variances of the corresponding variates L,
j € <d>, do not require any eigenvector or eigenvalue calculations.

THEOREM 1: (a) Define [6Y’]j € <d>) inductively by bV A b'"" and, for
- J—1 N -
l<j<d 6780 =% (<pb”, gp" > )" (<p's”’, 5>, where

. i=1
<xy>,A x'Ay for (xy) € R*“x R“ Then {b"’|j € <d>} is a well-defined nullity set of
P,.

- d o
(b) Define b A ' — 3 (<p'p", g'd""> )" (<g'b6Y", B'6'> )b if 5 € span

) -
(391 e<d>1, b A b'” otherwise. Then 6'” is a well-defined normality vector of P..

(c) For every j € <d> let L; denote the random variable that takes on the value log
K, (cb"') when ¢ takes on the value ¢. Also, define LA (L, ..., L) and
LACLyL,, ..., L)’ Then L is a normal random vector with independent components.
Additionally, £ is a normal random vector with independent components if 5'” € span
(3 € <d>}.

(d) For every j € <d> let g, denote the density function of L, Then g (/)=
(n,V2m) Vexp (=) 7'U = v )Y for every | € R', where v, is the expected value of L, and
n? is the variance of L, Furthermore, v, = <u,B'0"'> — ¥ a,b"' and 57 = <g'b""’

=]

B'b'"'>  for every j € <d>, where <, -> denotes the usual inner product on R

Throughout the remainder of the paper we define b’ and L, for j € <d>. L, and [ as
in Theorem 1. We also denote K,(c,b'") by K,(c) for j € <d>.

We shall now show that if there exists a nullity set of P. that satisfies Assumption (2)
then every nullity set of P. must satisfy (2).

PROPOSITION 1: If Assumption (2) holds then for any nullity set {5'"'|j € <d>) of
P, the set {3']j € <d>} is linearly independent where 5"’ & B'b""’ for every j € <d>.
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PROOF: L.. .. ‘lj € <d>} be a nullity set for P, such that {3'] j € <a>) is linearly
independent where §V’ A8 '6Y for every j € <d>. Let B A span {b‘”l/ € <d>)and § A
span {§Y']j € <d>}. Define T to be the unique lmear transformauon for B 10 S such that
T(bY") = 3Y) for every j € <d>. Thus, since g'b"’ ' for every j € <d>, one has
T(b) =pB'bforall b € B.

Since {Y’]j € <d>) is a nullity set for P, one has span {6Y’|j € <d>} = B. Thus,
for every j € <d>, T(6V)) = ﬂ'b(’) V), Note T is an isomorphism from B onto S and
{6Y’|j € <d>) is linearly independent. Hence. {(5Y°]j € <d>} is linearly independent.

Next we consider the assumption §® ¢ span (§V']j € <d>}.

PROPOSITION 2: Assume § @ span {§“’|j € <d>}. Then for any nullity set

{6'’|j € <d>} and normality vector 5” for P. one has 5 ¢ span {3(j)|j € <d>] where
§Y7 A B'bY" for every j € <d>.

PROOF: Define B A span {6“’j € <d>} and SA span {§“’|j € <d>}. Let T be

the unique linear transformation from B to S for which T(bY) = 39" for every j € <d>.
Since B8'b'") = §"" for every j € <d> one has T(b) = 8'bforall b € B.

Since {6"'] ) E <d>] is a nullity set of P. one has span {b"'|j €e<d>} C B. Also.

since 5'” and 6'” are normality vectors of P. it follows that 5% — 5 € span
{b(_’)lj € <d>), ie., 6 € B, Thus, for every j € <d>, bY’ € B and hence, TV =
B'6"’ = 5"'  Finally, observe T is an isomorphism from B onto § since 5 ¢ span

{31 € <d>) and {5"']j € <d>) is linearly mdependem ‘by Assumption (2). Moreover,
{b'j € <d>) is linearly independent. Thus {5’[j € <d>) is linearly independent.

As mentioned earlier, when u = n and ¢; = e, for every i € <u> then Assumption (2)
holds. In addition one has §'” @ span {§"'|j € <d>} and hence by Theorem 1 the com-
ponents of L are independent. We next consider the case where Assumption (2) holds but
§'9 ¢ span {3'']j € <d>).

PROPOSITION 3: Assgme 59 € span {3"']j € <d>). Then there exist y, € R! for
j € <d> such that sV = z y;5Y" where s’ A 8’6" for every j € <d>. Furthermore,

d
z y,L, + D where D is the constant z b — ¥y, log a,.

r=1 J=1

PROOF: Since ¥ Edspan {39, € <d>}'4 by Proposition 2 there exist y, € R' for
j € <d> suchthat s'” = ¥ y s’ Thuss® = ¥ ys" foreveryi € <u>.

j=1 J=1

” b (O
[Ia’

1=

d
X s

r=1

| = i 5 log a,+ 3 yLles') = i 5 log a, + 3 v,

=1 1=1 1=] =1

By Lemma A, Part (iii), L, A log Ky(c) = log [

[exp(L(e,s(o’))}] - i 5" log

1=]

d
log e = i 5 log a,+ ¥

=1 1=1

u n "
a,+Y 5 log =3 5" log a,+ ¥

=1 t=1| t=1
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n d n o n "
IL,- - b 10ga,|= % yL, +Dwhere DAY 5" loga,-F »|¥ 6 loga,|= ¥
i1 =1 -l g=1 L=t =y
o d )
5™ = ¥ y,b" 'l log a,.
J=1
We next consider the d-dimensional random vector r A (r, ..., r,)’ mentioned earlier

whose density function can be used to obtain moments of v(P.). To define r assume ¢, takes
on the value ¢, Then, by Assumption (4), D, has a unique optimal point § . Since
{61 € <d>} is a nullity set and 5'” is a normality vector of P, there exists a unique point

d

re A (@, ..., ry(@)' € RYfor whichd, = 5" + F (r(c))b""'. We define r to be the ran-
=1

dom vector that takes on the value r; when ¢, takes on the value ¢;. In the next section we

shall obtain the density function of r from that of L. Also, when ' & span {3"'|j € <d>).

we shall obtain the density function of v(P.) as a marginal density of (v(P.).r). The density

function of (v(P),r) is obtained from that of L.
4. THE DENSITY FUNCTIONS OF rand v(P,)

Assume ¢; takes on the value ¢;. Since 8§ is an optimal point for D with all positive
components (Assumption (4)) it follows that §_ satisfies the maximizing equations for D_ (4, p.
88, Th. 3]. Expressing 8, in terms of the components of r.. the maximizing equations can be
written in the form log K,(¢) = h;(r.) for every j € <d> where, for j € <d>, h, is the
function defined in Theorem 2. The above equations will be used to obtain the density func-
tion of r from that of L. From the above maximizing equations one can easily show that the
optimal value of P_ satisfies the equation log K((c) = log (v(P )} + hy(r) where h, is defined
as in Theorem 2 [4, p. 88, Th. 3]. This equation, together with the maximizing equations, will
be used to obtain the density function of (v(P),r) from that of L when 3" ¢ span
(5 e <d>).

To obtain the density functions of rand (v(P,),r) we shall first define the functions #, for
Jj € <d> and establish several of their properties.

THEOREM 2: Let H A {r € RYBr > —b'"}) where B is the n x d matrix whose jfh
column is b''' for j € <d>. For every j € <d> define h;; H — R' such that, for r € H.
n l’
) A Y b logd,(r) — 3 A log A (r)

1=t k=1

p J
(where ¥ A"’ log A (r) AOif p=0). In the above. for every r € R 8,(r) A ' + ¥
x=1 _ =1
r,b,"’ for i € <n> and )\K(r)é 2 5.(r) for k € <p>. Also. for every j € <d> and
e d,
K€ <p>A"A T b
e d,

_ For every j € <d> define A, (0,00) x H — R*'! such that, for (zr) € (0,00) x H.
h,(zr) A h(r)if j € <d> and hy(zr) é log = + hyir).

Finally. define #1 H — R' and i (0.00) x H — R'"' such that, for every
(z.r) € (0,00) x H, hiry A Uh(r), ooy Ay Ge)) and Alzr) A Chylerd () o hylerd)
Then
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(a) hand « ... .ontinuously differentiable in H and (0, o) x H respectively;
(b) his 1-1in Hand his 1-1 in (0,%) x H,
(¢c) his onto RY,
(d) If 3" @ span {3"'|j € <d>} then A is onto RY*".

PROOF:_ (a) Clearly, for every j € <d>, h, is continuously differentiable in H and, for
every j € <d>, h, is continuously differentiable in (0,00) x H. Thus, 4 is continuously
differentiable in H and 4 is continuously differentiable in (0, ) x H.

(b) Let r and s be elements of H such that h(r) = h(s). Note 8(r) > 0 and 8(s) > 0.
Also, since (log K,(¢), ..., log K,(¢))" is a nondegenerale d-dimensional normal random vec-
or, ¢, takes on a value, say ¢;, for which log K,(c) = h,(r) = h,(s) for every j € <d>.
Thus, by definition of K, and &, for j € <d>, 8(r) and 8(s) satisfy the maximizing equations
for D.. Also, 8(r) and &(s) are feasible points of D. Thus, by (4, p. 88, Th. 3], 8(r) and
8(s) are optimal points of D.. However, by Assumption (4}, D. has only one optimal point
and hence 8(r) = 8(s). This implies r = s since the nullity set {b'''|j € <d>) is linearly
independent.

Next, let (z(,r) and (z,.5) be elements of (0,%) x H such that hizyr) = 5(:2,5),- Then,
h(r) = h(s), and hence, r = s. Also, ho(z,.r) = hy(z,,s). Hence. by the definition of h,,

- " 4
tog z) = holzpr) — F 5" 1og 3,(r) + 3 A og A, (r)

=1 =1

- i [
= ho(z,,8) = 3 b'" log 8,(s) + 3 A" log A, (s)

j- x =~

i

log 22

and thus z| = z,.

(¢) Let v € R Since Uog K,(c), ..., log K,(c))" is a nondegenerate d-dimensional
normal random vector, ¢; takes on a value, say ¢, for which log K,(¢) = u, for every
J € <d>. By Assumption (4), D has an optimal point 8 such that 8 > 0. Let r be the

. d )
unique element of R for which 8 = 6 + ¥ r 5"’ and denote & by §(r).

Since 8(r) > 0 one has r € H. Furthermore. since 8(r) is an optimal point of D | by [4,
p. 88, Th. 3] &(r) satisfies the maximizing equations for D.. Thus, for every j € <d>.
h(r) = log K,(¢) = u,. Hence, his onto R"

(d) Assume '" & span {3'"'|j € <d>]. Letw = (u,, ..., u))' € R’and u, € R' By
Theorem 1, (Ky(c), K,(c¢), ..., K,(c))"is a nondegenerate (d + 1)-dimensional normal ran-
dom vector. Thus, ¢, takes on a value, say ¢, for which log K, (¢) = u, for every y € <d>
By Assumption (4). D has an optimal point 8 such that 8 > 0. Let r be the unique element of

- of -
R for which & = b + ¥ r b'"" and denote & by 8(r). Let ry A v(D).

1=

it iabitiasetbi, 2
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Since 8(r) > 0 and v(D.) > 0 one has (ro.r) € (0,0} x H. Also, since 8(r) is an
optimal point of D., by [4, p. 88, Th. 3] 8(r) satisfies the maximizing equations for D.. Thus,
forevery j € <d>,

48] h(ro.r) = htr) = tog K,(¢) = u,.
Also, by [4, p. 88, Th. 3], since 8(r) satisfies the maximizing equations for D. one has

_ n _b“ll 14 A(Gl
ro=v(D) = Ko@) JT8.(r) * JIA()™" .

1= k=]

n p
Thus, log ro = log Ko@) = 3 5" 1og 3,(r) + 3 A" log (A, (r)), i.e.

=1 K|

(2) il()(l’(),f) = log K()(F) = Uy,
By (1) and (2) his onto RY*".

Note by Theorem 2, for every !/ € R“ there exisls a unique point r, € H such that

I = h(r). Thus, we can define # ' R“— Hby h™'()) A r, for I € R’ Also. if 3 @ span

§' j € <d>} then by Theorem 2, for every 1€ R there exists a unique point

(z;.r;) € {0,0) x H such that [ = f(z;,r;). Thus, when 3’ @ span (3""'lj € <d>]}. we can
define 4 ': R“*' — (0,00) x Hby 4 '(I) A (z.r) for [ € R**".

PROPOSITION 4: (a) r = h '(L);
b)Y (v(P),r)y=h"YWLYif 5 @ span {5V']) € <d>).

PROOF: (a) Let ¢, take on the value ;. Then L takes on the value / A (log K,(¢),
log K,{(¢)})'. By Assumption (4) and [4, p. 88, Th. 3] one has r € H and log K, (c) - h, (r)
for every j € <d>. Thus, h™'(/) = r.. Hence, h~'(L) takes on the value r, when ¢, takes
on the value ¢, i.e., h" (L) = r.

(b) Assume §'” @ span {§"']j € <d>). Then i ': R4 — (0,00) x H is well-defined.
Let ¢, take on the value ;. Then L takes on the value IA (log Kq(2), log K,\(C), , log
K,(7))'. Note v(P,) takes on the value v(P-) > 0. Also, by Assumption (4) and [4 p. 88,
Th. 3] one has r. € H and log K,(c) = h, (v(P.), r.) for every j € <d> Thus, h™'(]) =
(v(P.), r.). Hence, # '(L) takes on the value (v(P), r) when c; takes on the value ¢, i.e..
hU(L) = (v(P),r).

We can now obtain the density function of r.

THEOREM 3: Let ¢ denote the density function of r and g denote the density function
of L. Then

0 if r @ H,
W)=V iethrnildet D) if r € H,

where Dh{r) denotes the derivative of hat r.
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PROOF: Let ¢ take on the value ¢;.0 Then rtakes on the value r A (r. ..., r,)" where
; =]

5 ="+ z r.b'"" is the unigue optimal point of D . By Assumption (4). & > 0. Thus,
|
Br > -p" e r € I Hence, rean only take on values in #. Thus w(r) =0if r ¢ H

Let B be an open Borel subset of H. Note, by Proposition 4,
Prir € BY=Prih "(L) € B)=Pr(L € h(B)).

By Theorem 2, has 1-1 and continuously differentiable in B, Also. g is integrable on h(8)
since g s the density funcuon of L. Thus,

Pril € h(B))—-f“m

¢ = f, & h)\der i
[12. Ths. 3-12 and 3-14]. where ¢ o4 denotes the composition of gand o Hence, Prir ¢ BY =
f“ (g dee DY This implies d(r) = {gh GnYilder Dirted)) for r € H.

Newt we obtain the density function of (VP ) 1),

THEOREM 4: Let ¢ denote the density function of (v(P).r) and g denote the density

function of L. Assume §'"” € span {§'"'l/ € <d>} Then

0 i (zr) & (0,00) x H,

I; sr) o= ~ " i
PEIT S e G 0) det Diter D i () € (0,000 x H,

where Diiz.r) denotes the derivative of A at (z,r)

PROOE: By the prool of Theorem 3t follows that (VP ) ) can only take on values in
th, o) x M. Hence, dlzr) = 040i tzr) € (0,00) x

Let B be an open Borel subset of (0.00) x / and define = A v(P,). Note by Proposition
4, Pritzr) € B)=Pr(h (L) € BY = Pr(L € i(B)) By Theorem 2. ji is 1-1 and continu-
ously differentiable in B. Also. & is integrable on A (B) since g is the density function of I
Thus, Prif € BN = [ &= f (& eildet Dhl 112, Ths. 313 and 3141 where &
denotes the composition of & and #  Hence, Pri(zr) € B) = f (2 °h) |det DAL This

implies i (z,r) = {2 GzrNYUdet Dz oD for (z.r) € (0,00) x M.

When 3" & span {17y € <d>] the above theorem immediately yields the densim
function of v(P ),

COROLLARY 41: Let f denote the density function of ~ (£ ) and assume 3 ¢ span
13" 'y ¢ <d>) Then

0 if 2 @ (0,00),

pizy = - - .
S teticrntdde Dirityar 7 € (0.0,

Observe that to evaluate f at = € (0,00) by Corollary 4.1 one must integrate a speaified
function over the convex poelvhedral ses H = {r € RYI1Br > -p"™}  When the degree of
difticulty o equals T then H will be an interval in R' whose end points can castly be obtained
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Thus. when d =1, one can accurately approximate f(z) by applying a quadrature formula 1o
evaluate the integral expression for f(z). However, the quadrature rule must be modified as in
[7. Ch. 7. Sec. 6.2] 1o allow for the fact that the integrand is not defined at the end points of
the interval of integration.

When d > 1 the effort and expense of devising and applying a quadrature scheme to
approximate the integral expression for f{(z) to a high degree of accuracy may not be justified
since frequently the distributions chosen for the stochastic ¢, will be subjectively determined.
In such cases a numerical Monte Carlo method could be an attractive alternative for approxi-
mating the multiple integral used to express f(2) 16, 14, 15).

Finally, under the assumption of Corollary 4.1 note the distribution function of v(P,).
denoted by F, is given by

ify <0,

0
Fy) = o -
[f,.-.,m.m, (&R0 det D Gr) Ddrdz o

Thus, if great precision is not required a numerical Monte Carlo technique could be attractive
for approximating F(y) as well as f(z).

5. THE MOMENTS OF v(P,)

In the following, for each random variable Q. recall £’ (Q) denotes the moment of order
v of Q whenever it exists, where v € N (the set of positive integers). Also, let
E(Q) A EV(Q).

Throughout Section 5 we assume E“'(v(P.)) exists for every v € N. Proposition B in
Appendix B establishes that boundedness of the dual feasible set F A {5 € R"[48 =0,
q8=1,8 20v i € <n>] is a sufficient condition for the above moments to exist. Furth-
ermore, one can show P is superconsistent for every ¢ € RY iff Fis bounded (see p. 554).

To calculate the moments of v(P.) it is advantageous to use the density function of r
instead of that for v(P ). To obtain the moments of v(P,) in terms of the density function of r

"for r € H. Thus, w(r) = H

=1

we shall use the function w: H — R' defined by w(r) A o

b " " -h wy P N w0y
5(r) 7 ifp=0andwl(r) =[]8,() " [Ir.Cr)" ifp >0 forre€H
=1

K=

PROPOSITION 5: v(P) = ¢ "w(r).

PROOF: Let ¢, take on the value ¢;. Then ('l"'w(r) takes on the value K(clw(r ) where

of
ro=(ry. .... r,) is the point in H for which & = 5" + ¥ r b""" is the unique optimal point
1=\

of D. Since & > 0one has K(lw(r) = v(P) [4 p. 88. Th. 3]. Thus, v(P) = ol"w(r).

-

We shall now obtain the moments of v(P ) when 3" € span {3'"'|j € <d>}.

THEOREM §: Assume §'” € span [5'']j € <d>}. Then. for every v € N,
EV'(v(P)) = _r‘ " {@ ()} W (r)dr where, for r € H,
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DT “,
e’ TI5.() if p =0,

j

w(r) A " ’ .
e? HS,(r)“' [IA = ifrp >o0.
(=1 k=l

" d I
In the above DA Y |b'" - Zy,b,"’] tog a, v, A Y yb'" —b'" for i € <n>_ and
/=1

=1 =1

o
v & T A =0 for k € <p> where (y,, .... )" is the unique element of R“for which
i=1

/
‘

(
s =3yt

1=

PROOF: We shall assume p > 0. (The modification needed in the proof for p =0
should be clear.) By Assumption (2) and Proposition 1 the set {s"'|j € <d>} is linearly
independent. Hence. by Proposition 3 there exists a unique element (y,, ..., v,) of R for

o

o
which s = ¥ y "' Also, by Proposition 3, log Ky(c) = ¥ v log K, (c) + D where
=1

D é jt[bfm _
=1

(1 log (v(P)) = log Kylc) + log (w(r))

=1

J
Y y,b,"’l jog «,. By Proposition § v(P) = K ()w(r). Thus,

=1

d p "
Y ylog K()+D+ ¥ A" logr (r) =Y 6" logs,(r).

1=1 k=1 =

Let ¢; take on the value ¢, Then r takes on the value r = (r((c), ..., r,(c))". Since
d
& A 6 + ¥ (r,(c))b"" is an optimal point of D and 8 > 0 (by Assumption (4)) one has
r=1
(by [4, p. 88, Th. 3])

n 4
log K(c)=h(r) =Y 6" logs,(r)— Y A" log A (r)

1= k=1

for every j € <d>. Thus, by (1),

=1 =1 x=1

o ”" I
log (v(P)) =Y y,[z 6! logd,(r) — Y A log )\K(r()]

i ”
+ D+ Y A" log A (r) = Y 6" log 8,(r)

k=1 r=1

" o
D + 2: 2:}Uh”” . bﬂn
=1 L=

%

=l

log 8,(r )

J

Y oA - A,'“’] log A, (r).

=1

Hence,

. 1 I v
vP) =" T8, (D [T A = alr),
=t

x=1

It follows that £" ' (v(P)) = E({v(P)}) = f‘” {@CrMaerdr (8, p. 18, Th. 1.4.3]
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We next obtain the moments of v(P) in terms of the density function of r when ' ¢

span {§'"']j € <d>].
THEOREM 6: Assume §" @ span {5'"']j € <d>)andletv € N. Then,
@) e "is lognormal and independent of R & w(r).
(b) W (v(P)) = E¥ (e MVEY (R);

i "
Lt (th
zl‘;b/ - Z arb:
r=1

el

N

(c) E(..l((.l,u) = cxplu + ﬁz_ (S(m .\Sun)]

] )
where sV =g'a'",

) EY'(R) = f el dr

PROOF: (a) By Theorem 1| L, is normal and hence vl” 1s lognormal.

Note by Proposition 4 w(r) = wlh (L)) where L = (L, ..., L,). By Theorem | [,
. l .
and L are independent. Thus, ¢ "and R are independent (8, p. 15, (ID].

{b) To show that E(R') exists let X A ¢ and ¥ A R'. Clearly (X.Y) is a continuous
random vector. Thus, Tet w be the joint density function of (X.Y). Also, let w, and w, denote
the marginal densities of X and Y respectively. Then wilxy) = wi{x)w,(y) for all
(xv.v) € R' x R'since Xand Y are independent by (a).

By Proposition 5 {v(P )} = XY Thus, by assumption, E(XY}Y) exists and hence,

J) xvw (v )dydy is convergent. Thus, by Fubini's Theorem [10, p. 207, Th. 2.8.7]
""'RK.R' © o .

ow ) dedy = J:) HU)dy where () A f“ w () dy = ywy(y) f“

o RIRY o I
xwy () dy = vw GOV ECY) D This tmplies £(XY) = E(X) f“ v (v)dy and hence f“ sl hdy
is convergent, i.c., F(R") exisls.

Since the expected values of ¢ fo and R' exist, the independence of v'l" and R' implies
Ete'"VEWRY = LG "R 1S, p. 82, Th. 3.6.2].  Thus. by Proposition S.
EVvP ) = BRI = EGTERDY = Y e M EY (R,

(¢) Recall by Theorem 1 E(Ly) = ¥ p,s™ = F o b and V(L) = 5" As"" where
bt

i=}
h
A)

=" and 1 (L) denotes the variance of L. By [2] one has £" el - exp v ECL,) +
I; o VL] since Ly is normal.

(d) Using the density tunction 4 of r we obtain F"'(R) = E(R') = f " lwrdtrydr
(8. p 18 Th 143

Note that to evaluate £ (v ) by Theorem § ar 6 onc must integrate a speaified tunc-
tion over the convex polvhedral set # = {r € R 1Br > - »'""] Hence. the comments made
in Section 4 concermng the evaluation of f£(z) also apply to the evaluation of £"'(v(P 1) In
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particular, note that for a given precision the amount of work required 1o caleulate £ (VP ))

by Theorem 5 or 6 should be about the same as the amount required to calculate f{z) by

Corollary 4.1. Thus, in calculating £ (v(P))_ it is advantageous 1o express £"'(v(P ) in

terms of the density function of ras in Theorems S and 6 rather than to express F' PO as
el A G2 17 o

0

6. EXTENSIONS

In this section we shall indicate how the preceding results can be used to obtain the distni-
bution and/or moments of v(P.) when P. need not satisfy all the assumptions of Section 3

¢

However, no formal statements or proofs will be presented.

In the following, we shall refer to strengthened versions of Assumptions (2), (3 ani (4
which are stated below for a stochastic geometric program P that satisfies Assumpuon (1

We say P satisfies Assumption (2') iff P satisfies Assumption (2) and $'" @ span
{3'1j € <d>) where 3" A B'6"" for every j € <d>. Here {b'"']j € <d4>]isany nulhny
set for £ and " is any normality vector for P . Also, the matrix 8 is defined as in Assump-
tion (1).

P is said to satisfy Assumption (379 iff P is superconsistent and sofuble for every
¢ €R".

Finally, P is said 10 satisfy Assumption (4"} iff D has a unique optimal point & and
8 > Qforevery ¢ € R"..

Now consider a family of random cost vectors [cle)le € (0,00} where ¢ le) A\
(e (e, ..., ¢,le)) fore € (0,00), that satisties the following:
() (log ¢,e), .... log ¢,(€)) is a nondegenerate normal random vector,

(i) Ellog ¢ (e)) = Elog ¢) forevery j € <n>.

(i) lim Covllog ¢ (€}, log ¢,(e)) = Covllog ¢, log ¢) for every (iy) € <n> x <n’>.
v o

where Cov denotes covariance.

Such a family of cost veclors can easily be constructed it P satisties Assumption (1)
When P also satisfies Assumptions (3°) and (4") one can show that P, will satisfy Assump-
tions (1), (2, (3}, and (4, where P ,,, is obtained from P by replacing ¢ with the cost vee-
tor ¢(e). Thus, the results of the preceding sections can be used to calculate the momeats, dis-
tribution function, and density function of P, for € € (0,00). Additionally, one can establish
that the moments, distribution function, and density funciion of P, converge to the
corresponding moments, distribution function, and density function of P, as e tends to zero

Next. consider the family of stochastic geometric programs {P''ly € (0,00)} where. for
y € (0.00), P'*' denotes the following stochastic program:

" I

inf & o1 [Tz

ey, i~1 x=1
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a

subject 10 ¥ ¢ "+ 2z, <1 for every « € <p>, >0, and >0 where

e d, !
t=1(n, .... ) and z = (zy, ..., z,)'. One can show P satisfies each assumption that P,
satisfies. In addition, if P satisfies (3') then P'v' satisfies (3’) and (4') (even when P, does not
satisfy (4)). Thus, one can apply the results of the preceding sections to calculate the density
function, distribution function, and moments of P' for y € (0, ) when P, satisfies (1), (2),
and (3'). Furthermore, one can establish that the moments, distribution function, and density
function of P!Y’ converge to the corresponding moments, distribution function, and density

function of P, as y approaches zero.

«

n
=1

Finally, for y € (0,%) and € (0,%), let P} denote the stochastic program obtained
from P/’ by replacing cost vector ¢ by c(e) in P!'. The family of cost vectors
{c(e)| € € (0,00)} is assumed to satisfy the properties (i), (i), and (iii} previously listed. One
can show, for (y,e) € (0,00) x (0,%), program P,(e)"’ satisfies (1), (2'), (3'), and (4") if P,
satisfies (1) and (3'). Thus, in this instance, one can apply the results of the preceding sections
to P'?). This suggests that the family of programs {P.%) |y € (0,90) and € € (0, )} may be
useful in obtaining the moments, distribution function, and density function of P. when P,
need only satisfy Assumptions (1) and (3').

APPENDIX A.

Theorem | in Section 3 is an immediate consequence of the following lemma.

' "
LEMMA A: Define L{zs) A Y s logz for every positive-valued random vector
=1
A (zy, ..., 2) and s € R Also, define the inner product <-,->, on R“ by
<x¥y>y A x'Ayfor (xy) € R"x R". (Note <-,->, is an inner product since A is a disper-
sion matrix of a nondegenerate normal random vector and hence is positive definite.) Then

(i) (L(es'"), ..., L(e,s')) is a normal random vector with independent components
where ¢ A (e, ..., ¢,).s'" = 5" and
1
Sl;l — 3,(4' = (<S(“,SHI> \) l(<3‘l"s‘1i> \)SH)

!

]
forl < j € d,

Giy (Lies"™y, Les'™), ... .L{es'"”)} is a normal random vector with independent

d

~ 0

FM - 3 (s> !
I

components if " @ span [3V']j € <d>) where s

(<55 05" when §' @ span {3'']j € <d>}.

[ )

(iii) For every j € <d>,s'"'=g'0""and [] t‘,h’ {exp (L{e.s" "))} where
=1

n h/
e
. =1

- a ! -
b =b"and, for 1 < j < d, b =b"" = F (B B> ) N (<pH B> )b
=1

. o
Also 6™ = b" if 3 € span {§"']j € <d>} and b =" - ¥ (<pb" BB "> )

I=1
(<BH™. 86> )b if §'" ¢ span [§""']j € <d>). Furthermore, {b'"'|j € <d>]is a nul-
lity set and »'" is a normality vector of P,,
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(iv) For j € <d>, the density function ¢, of L (e,s'"") is given by &,(/) A —IJ_: exp
, w 2w
(/—p,))"
l-— BT for every [ € R' where p, is the expected value of L(e,s'"’) and w? is the vari-
w;

ance of L{es""). Furthermore,p, = ¥ 15" andw?= <s''s"'> .

PROOF: Since A is real symmetric, A has an orthonormal set of u eigenvectors
{p. P Let P be the ¥ x u matrix whose jth column is p,. Then P is orthogonal (i.e.,
= P) and i A P 'APis diagonal.

Forevery i € <u> lety,Aloge andy A (yy, .... v,). Lety A Py, Then ¥ is a u-
variate normal vector with dlSDCfSIOﬂ matrix PAP = A ([8 Th. 2.1.1D. Since A is diagonal,

the components of ¥ are independent.

Let (s,w) € R“x R“ such that w = P's. We shall show L{es) = L(¢é,w) where ¢ A

(61 ....¢) and & A e for1 € <u> Notey= Py. Thus, fori € <u>,y, = 3 Py
Hence
() Ltes) = slz royv.=X X rs|y
.- . =1
= Z w.y, = [l (on)
For every ¢ <« > daine w A P57 By assumption {§'']j € <d>} is linearly

independent. Thus | w ;< d > hnearly independent since P’ is nonsingular. Thus, one
can apply the Gram-Schmidt orthogonalization process to {w'''|j € <d>} 10 obtain the
orthogonal set {w ./ + < J >1 with respect to <-.-> where w'"” A %' and, for 1 < j < d,
(2) w ol Aw 2(<n",u N ](<”"Mm>\)w‘“.

- -
(Note <-.-> is the inner product on R" defined by <x3>; A x Ay for (x,y) € R*x R"

<-,->, is an inner product on R" since A is the dispersion mdmx of the nondegenerate nor-
mal random vector ¥ and hence is positive definite.)  Also define

3) wm; ;\ ﬁ‘un _ z’: (<wu|.wm ) |(< ~t(n ”'>i)“'(“

if 3" @ span {3"'[j € <d>); otherwise define w'™ A #'". Observe if " @ span
{3/ € <d>) then &' ¢ span {W"'|j € <d>). Thus, |w"'lj € <d>} is an orthogonal
set in R with respect to <-,-> when 3" € span {3'"’]j € <d>].

Define s"’£ Pw'’ for every j € <d>. Then. for j € <d>, w''' = P's""'. Thus. by
(1),

(4) Lies'') = L(éw'') forevery j € <d>.

We shall next show (L(&w'"), ..., L(&w'')) is a normal random vector with independent
components.  Also, whenever ' @ span {3"'|j € <d>}, we shall show that
(LGw™, Ltew'™), ..., L(&w'"")) is a normal random vector with independent com-
ponents.
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For every i € <u> let#” and 7, be the variance and mean, respectively, of log ¢,. For
—_ U
i € <u> define w, A8 (log & - 7,). Note, for every j € <d>, L(&w"") =3 w" log

1=
il i -
> gow'' W, + Y 7w Let rr € <d> such that r # 1 Recall yA (log
. =1 -
&, ..., log &) is a normal vector with independent components. Thus, {¢,|li € <u>}is a
set of independent unit normal random variables. Thus, L (¢,w'"’) and L (& w"’) are normal

I
random variables. Moreover, L(&w'’) and L(éw'') are independent provided Y
=1

92w ! = 0 8, Th. 4.1.1, p. 70}

i

Since. for every i € <u>, 6! is the variance of ¥, and A is the dispersion matrix of ¥

o -

one has ¥ 62w w'" = <w' w'>( By construction of {w"'[j € <d>} one has
V:l -_—

<w' w!"'> =0 for rt € <d> with r Z 1. Also, <w'',w’>{ =0 for r,f € <d> with

r # t provided ' € span {§'/'lj € <d>}. Hence, by (4), (L(es'"), ..., Lles'")) is a
normal random vector with independent components. Also by (4), (L(es"),
L(es'™), ..., Lles')) is a normal random vector with independent components if §% ¢

span {3'[j € <d>1}.
Next, let (x'' y'"") € R*x R“for i € {1,2} such that ' = P'x"'. Then,

(s) <y PyP> = <PV P> = (XY PAP XY = <x!M x>

Observe s'"' = Pw'l" = Pi'" = §'Y Also, by (2) and (5), for | < j < d one has
P
(6) S‘”= Pwlr)= PVAV(') _ 2 (<wll) (I)> ) I(< .(,) ”)>i)PW‘“

i -1
“4/’ ( l/) ll)> ) l(<\(/i ([)> )S(Il
N \ .

=1

Moreover, by (3) and (5) one has

(7) su);= Pw(m= 2t Z (<sm BN ) |(<—~un m> )S(Il
1=

5" ¢ span {§'"']j € <d>}. This completes the demonstration of (i) and (ii).

Next, we shall obtain a nullity set {#'"'|j € <d>} and normality vector »'” for P, such
n h (V] UP

that 5" = g'"" and H ¢ Ha {exp(L(e,s'""))} for every j € <d>. Let SA

span 3] € <d>) and BA span (6''1j € <d>). By assumption {3''lj € <d>} i
Imcarly independent and hence a basis for S. Thus, there exists a _unique linear lrdnsformdllon

- § — B such that T(G"") = 6" for every j € <d>. Since |b'"']j € <d>) is a basis for
B T is an isomorphism from S onto B. Also. since T "6y ="' = g'6"" for every
j € <d> onehas T ')y =pB'hfcrevery b € B

Recall s =3" € 8§ Let | < j < dand assume s''' € Sfor 1 £/ < j. Then by (6)
one has s'"' € S, Hence. {s""'lj €<d>} C 8 Also {s"'[j € <d>} is linearly independent
since {w' [/ € <d>] s orthogonal with respect to <, ->, and P is a nonsingular matrix for
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which sY/' = Pw' ' for every j € <d>. Thus, {s'"'|j € <d>} is a basis for S. Since Tis an
isomorphism from Sonto B, {T(s"")]j € <d>} is a basis for B. Thus, {6'"'|j € <d>}isa
nullity set for P, where b'"> A T(sY" for j € <d>.

Let § A span {3 € <d>} and B A span_ {b"’lj € <d>}. Suppose ' ¢ S. Then
there exnsts a unique linear transformation 7 § — B such that T(3"") = """ for every
Jj € <d>. Also, by (7), s'” € § Thus, we can define 6® A 7(s'”). Note by the definition
of Tone has 7(s) = T(s) for every s € S. Thus, by (7),

®) b = TG = F (<5505 )<, ) F(s)

I=1

~ p _ E(<sm S )T O 55 ) ptD)
f=1

since T(s'") = T(s"") = 8" for | € <d>. For j € <m> let A, denote column ; of
exponent matrix 4. Recall ¢ € R"such that ¢, = 1if i € <ny> and g, = 0if i > ny where ny
is the number of elements in Jo. Then by (8), for every j € <m>, one has <b'", 4,> =10
since bV is a normality vector and {'’|/ € <d>} is a nullity set of P,, where <-,-> denotes
the usual inner product on R". Also, <b@ ¢> = <b'® ¢g> =1 since <b'”,g> =0 for
every | € <d>. Thus, 5" is a normality vector for P.. If 3” € S we define 6 A b
Thus, whether §'” ¢ Sor $'* € Sone has that ' is a normality vector for P..

To show Bb"’—s" for every j € <d> first observe for j € <d> one has
B'bY) = T'(6Y) = T-(T(s"") = sY”. Next suppose §'” € 5. Then T is an_isomorphism
from § onto B since [b"’l/ € <d>) is lmearly independent and T(")) = 6 for every
j € <d>. Also, T8 =3 =6 for every j € <d>. Hence, T7'(b) = B'b for all
b € B. Note 6@ A T(s'”) € B. Thus, 86 = T'(6") = T-UT () = 5. Finally, sup-
pose §' € S Then B'5(0) =56 =0 = pp©® = py@ = O  Thys from the above,
B'bY) = s for every j € <d>.

- " t h,"' " [
Next let j € <d> and observe H c‘h’ H Hc'] = Ha,h’ I

" noog b ” "' 23“b”' . et (i) ~on'!
IIie " He" . Thus, since B’ = s'"" one has [] ¢,' =
l'sl l=l

" hi/i " tr (/l

e[t = T a
=1 vl ol

p=y =1
Note b =T(G") = T(Pw") = T(Pp'") = TG") = 5", Also. by (6), for

14 h(/'
l= Ha’l
n () ~) = i B NS
1<,;<d one has b =TE"N=TCE")- FT (<s's''>)) (<35> )
=1

lexp(L (e,s''))]}.

i
[exp 3 s " log e,

7=

T =0 = T (<Bb,80">\)" (<pp' B> )b Recall if 5" € span
=1 .

{31j € <d>}then 6 A 6. If 3'” ¢ span {3"'j € <d>} then by (8) one has

b(o) - 5(0) _ i (<B,b”);B’b”,> \)—'(<B'5IO),B'b(I)> \)b(“.

{=1

This completes the demonstration of (iii).
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_ u u
Finally, let j € <d> and recall L(es"") =Y 5" log ¢, Thus, p,= Y s''u, and
1= (=1

wl=<s'" s> (8, Th. 2.1.1, p. 29] since (u,, ..., u,)' is the mean vector and A is the

dispersion matrix of e. Also, since L(e,s'’) is normal, one has ¢,(/) = 1 exp
) w, V2T
(I—p)
l———p,—’— for every / € R'.
2v;

APPENDIX B.
PROPOSITION B: (a) If His bounded then E"'(v(P,)) exists for every v € N.

(b) H is bounded iff the set FA {5 € R"|8, > 0v i€ <n>, A8=0 and ¢'6 =1} is
bounded.

PROOF: (a) Assume H is bounded. Then for every j € <d> there exist real numbers /,
and u, such that [, < r < u, for every r € H. Let v € N and define = A v(P). Finally,

~t

assume ¢; takes on the value ¢; and recall r = (r\(%), ... ,r,¢)) is the element of H for

n o
which 8 A ' + ¥ (r,(¢))b""" is the unique optimal point of D,.
y=1

Since & is the optimal point of D, by {4, Ch. 3, Sec. 3] and Assumption 3 one has

ﬁ Ar)
k=1

H‘Alir') :‘A.(r‘)

o i "
=K@ [T K@ T8,
=1 =1

1 . . P R . . -
where I_I)\K(r)A" 'él for r € H, the closure of H. if p=0. Define r: H— R' by

k=1

f( A [T 8.0

=1

st o A — . .
" IT A" for r € H In evaluating 7(r) use the convention
k=1

x'*=x'=1 for x =0. Then 7 is continuous on H. Thus. since H is compact. there exists
U € (0,0) such that 0 < 7(r} < Ufor every r € H. Hence,
d

(1) 0< 2" < UKy [ K, @

=1

I. Assume "' € span {3"'lj € <d>}. Then by Proposition 3 there exists v, € R' for
¥
Jj € <d>and W € (0,00) such that Ko(¢) = W] K,(c)". Thus, by (1),

1=1

d R
(2) 0< < Uwy LK@
i=1

. )
er

Let j € <d>. 170 < K{(c) <1 then K,(c)""K, (&)
I < K (&) then K@ K@
ety o) -
< Z,(0) A max (K@) K@)

< K@7K@ . Also.if

iy by v ton
, .

< K@K @ Thus, 0< K(¢)
[N
“). Hence, by (2).
o
(3 0< = < uwy H Z ),
=1

Moreover, by the choice of {b'']j € <d>1, the variates K,(¢) for j € <d> are independent
and hence {Z,(c)|j € <d>)is a set of independent variates.
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By definition ui £,(¢) one has

(4) 0< Z@ < K@ "+ k@&

Since K,(c) is lognormal so are K,(c)"“’”’, and I\',(c)m/w’) Thus, the expected values of
. . . iy 2 L) . [N

these two variates exist and hence so does E(K,(¢) " + K, (¢) oty Thus, by (4). the

expected value of Z,(c¢) exists. Since the variates Z,(¢) for j € <d> are independent the
!

expected value of (UW)" [] Z,(c) must also exist [5. p. 82, Th. 3.6.2]. Hence, by (3), the
1=1

expected value of " exists.

«

1. Assume 3" ¢ span {3'']j € <d>}. Then by the choice of {6'"'|j € <d>} the vari-

ates K, (¢) for j€ <d> are independent. For ;€ <d> define ZI(¢) A max
(K,(F)"/’,K,(F)"“’) and let Z,(c) A U'Ky(c)". Then the variates Z,(¢) for j € <d> must be
independent. Furthermore, 0 < l\’,(F)”’M < Z,(¢) for j € <d>. Hence, by (1),

o
(5) 0<:z <[] 2.

1=0

Note that E(Z(c)) exists since Zy(c) is lognormal. Also, for j € <d>. E(Z, ()
exists since K, (c¢) is lognormal and 0 < Z,(¢) < I\',(F)'I' + I\',(F)””. Since the variates Z,(¢)
for j € <d> are independent it follows from (5) that E(z") exists.

By 1 and Il we conclude £ (v(P)) exists for all v € N.

— o
(b) Observe & € Fiff there exists r = (ry, ..., r,))" € Hsuch that 8 = " + ¥ rp'’.
1=\

Also, H is bounded iff His bounded. Thus. Fis bounded iff H is bounded.
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A CLASS OF CONTINUOUS NONLINEAR PROGRAMMING PROBLEMS
WITH TIME-DELAYED CONSTRAINTS
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ABSTRACT

A pencral class of continuous ttime nonhinear problems s considered
Necessary and sufficient conditions Tor the existence of solutions are esta-
blished and optimal solutions are characterized i terms of o duaity theorem
Fhe theory as illustrated by means of an exampie

I. INTRODUCTION

Recently Farr and Hanson [1] proved existence theorems, duality theorems. and continu-
ous lime analogues of the Kuhn-Tucker Theorem for a class of continuous time programniing
problems in which nonlinearity appcars both in the objective function and in the constraints
More recently this class was extended in Farr and Hanson [2] 1o include problems with
prescribed time lags in the constraints. In this paper we generalize these results by considering
a more general form of the constraints and by assuming a less stringent constramnt qualification
This constraint qualitication is analogous 1o that of Kuhn and Tucker [3] and provides turther
unification between the areas of finite-dimensional and continuous time programming.  An
example is presented wherein these results are applicd 0 a version of Koopmans™ [4] water
storage problem which has been modified to adiress the cconomic vamifications of an energy
crisis.

2. THE PRIMAL PROBLEM
The problem under consideration (Primal Problem A) s
Maximize

!
fi-) = fn b dr

subject to the constraints

n gy =20 0< 1< T
(2) fzt) 0y < hGotz gy, O < < ]
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and
(3) ) =0, 1 <0,

where - € L,° 10, T]. i.e., z is a bounded and measurable n-dimensional function; v is 4 map-
ping from L, [0, T1 x [0. T] into E” defined by

4 !
(4) vizr) = z“j:) gz(s —a,). s —a,)ds;

-
S, ez € E™ gilzls—a), s—a,) € E' j=0, ..., r. The set 0=a, <
a) € ... € a, is a finite collection of nonnegative numbers; and ¢ is a scalar function. concave

and continuously differentiable in its first argument throughout [0, T'].

It is further assumed that each component of —f, g,, and /1 is a scalar function, concave
and differentiable in its tirst argument throughout [0, 7], that each component of the composite
function /1 (v ¢.1).0):L,°[0, T] — E™ is concave in z. there exists & > 0 such that

(5) cither V f,(q.1) = 0 or V f,(n,1) 2 8.
and for each r and & there exists i, = i, (1) such that
(6) Vil .0 28,

where

Viliin.0) =8/, (n.0)/dn,.

i=1 ....m k=1 ....n

form € E".n =2 0.and 1 € [0,T];

(7) gz =01<0,
Jg=0, ....7r:

(8) Vv, t) =9hw,0)/0r, 2 0,

forv € EMand 1 € [0.7T]: and

(9a) .,:"‘,‘E’,”"O'T’ < oo, ui.“/jp/ Viht0,1) < oo, j=|, .... m
k=1, ....n

(9b) nﬁlrl-p/ £,,0.1) < oo, ws'up/ Vg, 00) <oo j=0,...,1

g=1 ....p k=1 ....n

(9¢) inI'I,/;((),l) > —oo, j=1,....m
(AN

(9d) sup, Vibnit) <oo,n€ " n20 k=1 ..., n
(A

{
A function = € L7 [0, 71 is termed feasible tor Primal Prablem A if it satisfies the con-
straints (1), (2). and (3). The primal problem is itself said to be feasible it a feasible = exists

It should be noted that Primal Problem A is identical to that considered in [21 ot p = m
and

iyt ) =1, vizr)

|

|
|
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where [, is an m-dimensional identity matrix.
3. EXISTENCE THEOREM
THEOREM 1: If Primal Problem A is feasible, then it has an optimal solution, that is,
there exists a feasible = for which
V(Z)=sup V(z),
where the supremum is taken over all feasible :.

We preface the proof of this theorem with a brief discussion of weak convergence and two
lemmas.

Let X be a normed linear space and denote by X* the collection of all bounded linear
functionals on X. If we define the norm of an element /' € X* by

A= sup 1/

Hadl=1
and define addition and scalar multiplication of linear functionals in the obvious manner, then
X* is a Banach space and is commonly referred to as the dual space of X. A sequence {x,} in X
is said 10 converge weakly to x € Xif f(x,} — f(x) as n — oo for every [/ € X*.

LEMMA 1: Let the uniformly bounded sequence of scalar measurable functions {g, (1)),
d= 1,2 ... . converge weakly on [0,7] to ¢go(r). Then except on a set of measure zero

go(1) £ Ilim sup ¢, ().

PROOF: See Levinson 16]

LEMMA 2. If ¢ is a nonnegative integrable function for which there exists scalar con-
stants #, = 0 and #, > 0 such that

g <o+, f glrds 01K T,

theng(n) <8¢, 0K 1T
PROOF: Sece Levinson {6].

PROOF OF THEOREM 1. Let - be feasible for Primal Problem A and multiply the con-
straint (2} by the m-dimensional vector (1, ..., 1) to obtain the inequality

791

Y <Y iz, 01 < T
X! =1

From the convexity of ecach / in its first argument. if follows from [R. p. 242] that

m i Liid
Y G 23 600+ Y a0,
t= he=

=1

where

alt) =Y 100,0.

i=]
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Set 8y = max[ , sup [ Z 110, l)}l by (9¢) and observe that by assumption (6)

A =inf mAin a (1) > 0.
{

Since : is feasible and therefore satisfies constraint (1), it then follows that

i m i
(10) AY 2 <o+ Y e, 01T
=1 =
Define
f Ve, ) ={V,g, ), forn € E s €[0T, j=0,.... 1
: and
[V 0] = A 1.0} e for o € E7, 1 € [0,7],
and sct
Glzrs) = z ml(s) [(Vhrzn.0]g (z(s),s)
p=u 0r-ay
and

Hzis) = Zl(s) (Vi zn.0lVg (z(s).5)]

y=1 hi-a,

where /[, () is the indicator function of the set E.
Since h and g, are concave in their first arguments it follows from {8) and from t3). {7) and {8)
that
! !
H o < 0o + [ GOs)ds + [ HO.L)z(s)ds

By (9a) and (9b) we select #; 2 0 and #> > 0, such that

[}

sup 2/1(0n+2f G,(0.1.5)ds} < 8,

and

sup max 3 Hy(0.15)

1=

From (10} we have that #7= (8, + 6}’ 4 and #3= 6,/ 4 arc nonnegative and positive con-
stants, respectively, for which

Z,Am ot +a*f Z.Amm 0<1<T

A=l

From Lemma 2 we conclude that

i

(n Y o <Htexp W) < Atexp W 01 < T,

bl

and hence the set of feasible solutions for Primal Problem A is uniformly bounded on [0.7].

Since o is concave and differentiable in its first argument throughout [0, 7], it follows
from (9d) . [8] und the uniform baundedness property that, for any feasible solutions = and ="
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V(z) = VEDY S TY sup (500 — 5000 sup Vb (") < oo
A=t !
and hence }Fis bounded above for all feasible -
Let ¥ = b V(z). where the least upper bound (lub) is taken over all feasible - Then
there exists a sequence {2} of feasible solutions such that

lim ¥z = V.
[EARN]

Since {z) is uniformly bounded. it follows from {10} that there exists a 7 10 which a subse-
quence of {z converges weakly in L] [0,7]. Denote this weakly convergent subsequence
itself by {29 the application of Lemma 1 to each component of =¢ then provides uniform
boundedness tor Z except possibly on a set of measure zero where, as will be shown later. it can
be assumed to be sero.

Since each component of the composite function A GGy s concave in 2 it follows
from [8]. (3} and the chain rule for differentiation that
i
h()‘(:".l).!) < WGz +f” HGorszUsy — Zishds, 0< 1 < 1.

Since each entry of the m x n matrix H{(Zr.s) is bounded and measurable, it follows that cach
row H (Zes) € L7 10,71 C L7 10,77 and so, by weak convergence.,

f” Hzs) (z4s) — 20 ds — 0, as d — oo,
Thus, by constraint (2)
(12) llim sup fN < G, 0 < T

Define (¥ f(n. 1)} = ((7, f,tn.),,.,. n € E". w 2 0, by the convexity of f
Fy ) 2 PG+ IV Gl . 0 < T

Therefore, trom (12),

(13) T € hGUEnD

except on a set of measure zero. since by [8], assumption (5) and Lemma 1 we have

fim sup [V /G0 0] 2ty - 30y 2 0
d o
exeept on such a set.

A seecond application of Lemma 1 to cach component of =/ provides
~ 2 < lim osupt- 20 <00 aein 011,
d oo
and consequently 2 is nonnegative except on i set of measure zero Fram this result and
expression (13, we observe that 2 can violate the constriants of Pomal Problem A on. at most,
a set of measure zero in (0,71 We define 2 ta be zero on this set of measure zero. as well as

for r < 0, and cqual to Z on the complement of this set Fhe feasibility of 218 then establishad
by noting that

and that

limosup £ e S 0 e
oo
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by the convenity astraint (1) and assumption (6).

By the concavity and differentiability of &

! ! !

L b= dr £ L & G0 dr +f” () = ZU))Y Vo (Z .0 dr.

Therefore. by weak convergence
i = nmf'(b«-"mmn 1
G o - '
!

< f“ YDt = V3,

By the definition of I and the feasibility of 2, 1(Z) € V. thus F(3) = T and T is an optimal
solution for Primal Problem A, Q.ED.

4. WEAK DUALITY

Betore the dual 1o Primal Problem A s formally stated. a continuous time Lagrangian
funcuion and 1ts Frechet differential will be introduced.

torw s L0100 and w € 1, [00T], define
!
(14 [ tuwy - f It te) ) + wit) Flu e
where

[ G aGGerd ) Pty 00 <oy

/ey

l.

and et a 1 tuw vy denote the Frechet differential [7) with respect to its firs: argument.
cvaluated ot wowith the iacrement vy € L0 [0.T] The differentiability of each of the functions
imvobh g e [ oansares that the Fredaet ditferential exists and atlows 8,4 (w7 y) to be deter-
nuncd by the simpie diftferentiation

) . / i
t13) Sl tuw ) = = L+ aya,
(lfl

[he Frechet differential has two additional properties that will be used in the ensuing discus-
sion. namely, the hnearty of 80 G Ly b an its inerement vy and the continuity of 8,1 G wiy)
in y under the norm

Syl man y,

.

Here . denotes the essential supremum (9. p 112}
IV y(r) = Otor s < O, then from (14) we have
I ©
(16) sl ey = [ UVt y ) ]
W H Gy s = w0 ly (O dr,

An appheation of Fubini's theorem [9] to interchange the limits of integration enables us to
express (1ol as

/
(! Al tuw y) =81ty yh 4 j:’ Yy OOV F* Cuow, ) dr,

I
Al tuy) = f [Vt o]y td
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and
.
(18) F*(uw.1) =f, H'us.w(s)ds — [V u.0Fw), 0K 1< T

With this notation the dual of Primal Problem A will be shown to be:
Dual Problem A:
Minimize

(19) Gluw) = Luw) =8 LGuw,u)

subject to the constraints

(20) ult), wlt) 20, 01 < T,

Q2n Frluwt) + [Volutn.n]l €0, 0 < T,
(22) u)=0,1<0

and

(23) wl)=0 1>T

THEOREM 2 (Weak Duality): If z and (u,w) are feasible solutions for Primal and Dual
Problems A, respectively, then {

Viz) € Gluw).

PROOF: By the concavity of ¢ and —f in their first arguments and the concavity of the
composite function k(¥ (-,1).1) in z it follows that L is concave in its first argument and

L(zw) — L{uw) €8 Lluw,:—u).
Thus,
.
V) — Gluw)=Lw) - f w (D FG0d
0
— Lluw) + 8, Lluw.u)
<& Ltuw,z —u) + 8 Luwa)
7
—f w ()Y F () dt
0 . f ' .
=8 L{uwsz)— fu w (Y FDdr
by the linearity of the Frechet differential in its increment. By (17) we have
r 7
8iLuwiz) — w'(l)F(z.l)dr=f()T:'(l){[V¢(u(l).r)l +F w0 dr
- f, wFGD@
which is nonpositive by constraints (1), (2}, (20) and (21). QED.
From Theorem 2 it is observed that if there exist feasible solutions, = and (fw), for the

primal and dual problems and if the corresponding primal and dual objective function values,
F{2) and G Gi,w), are equal, then these solutions are optimal for their respective problems
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S. THE CONSTRAINT QUALIFICATION.

The constraint qualification introduced here is motivated by the form of the Kuhn-Tucker
constraint qualification presented by Zangwill [11] and also by Property 1 given below. The
basic theory surrounding this qualification is established to provide a framework for the
theorems of Section 6.

PROPERTY 1: If

T
(24) 3V(zy) = [y ()IVe(:(0).0ldi > 0
where z, y € L® [0,7], then there exists a scalar @ > 0 such that
Viz+1y) > V{2), for0< 7 < 0.

PROOF: By (15) and (24)
Iilr})) Vez+ry)—- V@Nr=8V(zyy) >0,

thus a positive o can be chosen which is sufficiently small so that
Viz+7y) > V(z), for0 < 7 £ 0. Q.ED.

DEFINITION 1: For each z which is feasible for Primal Problem A, define D(z) to be
the set of n-vector functions y for which

(i) yelL>l0T]
(i) y()=0, forr <0

(iii) there exists a scalar o > 0 such that

2+ 71y} 20,01 < T,
and

Fz+7r91) 200 :t<T
for

0<7<o0.

DEFINITION 2: Define D(z) to be the closure of D(z) under the norm ||-[|°: that is. if
a sequence {y9 C D(z) is such that ||y?— yl|> — 0, as d — o, theny € D(z).

Henceforth, the Frechet differential of the mapping F(-.t): L [0,T] — E™ evaluated at 2
and with increment y, will be denoted by 8F(z;y),. It should be observed that, for any
specified value of ¢ € [0,T], the existence of 8 F(z;y), is ensured by the differentiability of /.
g;. and h and that when y(¢) = 0 for 1 < 0, we have

(25) 5F(ziy), -fo' Hizts)y (s)ds — [V £iz(1).01y(1).

Similarly, the Frechet differential of a component F,(-,¢) of F(-,1), evaluated at z with incre-
ment v, will be denoted by 8 F,(z.y),.

. N




NONLINEAR PROGRAMMING WITH TIME-DELAYED CONSTRAINS 581

DEFINITION 3: For each z which is feasible for Primal Problem A define «/(2) to be the
set of n-vector functions y for which

() yelL>l0Tl,
(i) y() =0, forr < 0,
(i) vy, (1) 2 0ae. inTy (). k=1...,n
(iv) 8F(zy), Z 0ae.inTy(2), i=1, ..., m
where
Tuy=lr e 0T =0l k=1, ... n
and
Ty ={rel0.TL Fzny=0}, i=1, ... m
In a comparison of the sets D(z) and {(z) with their finite-dimensional counterparts
presented in Zangwill [11], it is observed that D(z) is analogous to the set of “feasible direc-

tions" at = and Z*(z) is analogous to that set of directions for which the directional derivatives
of each of the active constraints at - are nonnegative.

PROPERTY 2: D(:) C 2(z).

PROOF: Part 1. Lety € D(z). Then by Definition I, there exists a scalar ¢ > 0 such

en
that 0 € 7 < o implies (1) + 7y (1} 2 0,0 < ¢+ < T Thus, if (1) = 0  theny, (7)) 2 0.
Assume that F(z1) = 0. If §F (z:y), < 0, then by the same technigque used in the proof
of Property 1. it follows that for 7 sufficiently small,
F iz +7y.0) < Filzn=0.
This resuit contradicts the assumption that y € D{(z) and therefore we conclude that

D) C «iz).

Part 2. Assume that there isay € L2 [0,7] and a sequence {y9} € D(z) such that max

Nyi— yill™ — 0, as d — oo, Then for all rsuch that z(r) = 0, yJ(1) 2 0.d=1,2 ... It
then follows from convergence in L= [0, T} thaty, (1) 2 O age.on T, (). k=1, ..., n

Assume there exists an ¢ and a set £ of positive measure over which £ {z1) = 0 and
8F (zy), < O forall 1 € £ By the continuity of 8F,(z:-), in the L™ norm (7], we can choose
a d* sufficiently large such that for d 2 d*

8K (zyN, <0
over some subset of £ which has positive measure. This result yields a contradiction to Part !
since it was assumed {y?] € D(z) and we can therefore conclude that D(z) C &(z). Q.ED.

DEFINITION 4 (Constraint Qualification)}: Primal Problem A will be said to satisfy the
Constraint Qualification if the problem is feasible and if

D(z) = 9,
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where Z is an optimal solution to the problem.

In more general problems where convexity and concavity properties are not assumed, the
purpose of the Constraint Qualification would be to eliminate "cusps' in the feasible region.
For example, the constraints

21(1) 20, Z;(I) Z O, 0< t £ T,
and
=z, ()P —2() 20,0 < T,

do not satisfy the Constraint Qualification when z(1) = (1,0), 0< < T, since
(1/2,0) € 2(z) but (1/2,0) € D(Z).

In problems such as Primal Problem A where convexity and concavity properties are
assumed, violations of the Constraint Qualification can be shown to arise when the constraints
take the form of equalities on some set of positive measure. For example, consider the con-
straints

210) 20,2000 20,0 1< T,
and .
[Z|(f)+22(!)—]]2< l—lE(I),0<’< Tn

where E is a set of positive measure in [0,T] and /() is its indicator function. It is observed
that for z(r) = (1/2,1/2), we have (1.1) € 2(Z) but (1,1) € D(z), thus the Constraint
Qualification is not satisiied.

THEOREM 3: If = is optimal for Primal Problem A, then under the Constraint
Qualification

8V(zy) €0 forally € 9(Z).

PROOF: Part 1. Suppose there exists ay € D(zZ) such that 8V (z;y) > 0. Then by Pro-
perty 1 there exists a o > 0 such that 0 < 7 < o implies V(z + ry) > V(Z); however, since
v € D(Z) we can choose a o sufficicntly small so that Z + oy is feasible for Primal Problem
A. Thus, by contradiction of the c¢ptimality of z, we can conclude that 8 V(z;y) < 0, for all
vy € D(z).

Part 2. Let [y be a sequence of functions in D(Z) and let y° be such that max
Ilyg — y211= — 0, as d — o. It then follows from Part 1 and the continuity of 8 ¥ (z;*) that
VG =1limsV(Zy) < 0.
Thus, 8V (z:y) < Oforally € D(z). Q.E.D.

6. DUALITY AND RELATED THEOREMS

In proving strong duality and its related theorems two additional assumptions will be
made. These are:

(26) HGZts) 20, 0<s<t<T
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and

(27) F(zt) -8F(z2), 20 0<1<T

where 7 is an optimal solution for Primal Problem A. It will be shown in Corollary 1 that
assumption (26) is implied if z(¢) = 0 is feasible.

THEOREM 4 (Strong Duality): Under the Constraint Qualification and assumptions (26)
and (27), there exists an optimal solution (&, w) for Dual Problem A such that & = Z and
GGEw)= V(3).

Before proving Theorem 4 the following linearized problem, called Primal Problem A', will
be considered:

Maximize
$V(z.z —7)

subject to the constraints

(28) 2(1) 20, 0< T,

(29) Ft) +8F(zZz—-2),20,0< 1T,
and

(30) z(t) =10, fort < 0.

LEMMA 3: Under the Constraint Qualification, 7 is an optimal solution for Primal Prob-
lem A’
PROOF: If z is feasible for Primal Problem A’, then
3()—z() 20, fort € T, (), k=1, ..., n
and
8FZz—7),20, fort € T5,(Z), i=1, ..., m

and therefore (3 — z) € 2(z). It then follows from Theorem 3 that, under the Constraint
fualification,

8V(z:z2—2)<0

for all 2 satisfying (28), (29) and (30). The optimality of Z follows since Z is feasible for Primal
Problem A’ and since 6 V (z,0) = 0. QED.

PROOF OF THEOREM 4: We rewrite Primal Problem A’ in the form
maximize

T
j; a'(z)dt

subject to the constraints
2(0) 20,01 T,




584 T.W. REILAND AND M.A. HANSON

and
B(1)z(t) € c(r) +L1K(l,s)z(s)ds, 0T

where a(1) = [Vo(Z(1),0)], B(1) =[VfEZ),0], c(t) = F(zt) —8F(F:;z),, and K(1,5) =
H(z1s). From assumptions (5), (6), (26) and (27) it is observed that the matrices a (1),
B{(1), c(r) and K (1,s) satisfy the requirements of Grinold's Duality Theorem [3]. Therefore,
there exists an m-vector function w satisfying

31 W) 200K 1< T,
and
T ,
E (32) BW#0) 2 a+ [ K(s0®()ds 0< 1< T,
such that
T T
(33) J, w0 cwa= [ a'wzwa

Setting w(s) = 0 for 1 > T, we observe from the identities (14), (17), and (18) that expres-
sions (32) and (33) can be expressed as

(32) FEw) + VoG ()01 €0, 0T,
and
(33) LGEZw) -8 LEZwz)=V(z),

respectively. From (31) and (32') and the fact that w(s) = 0 for t > T, it then follows that
(z,w) is feasible for Dual Problem A and, from (19) and (33')

(34) GGEZw)= V).
Finally, by the weak duality established in Theorem 2, it is concluded from (34) that (z,w) is
an optimal solution for Dual Problem A. QE.D

In order to apply Theorem 4 in practice, it is desirable to be able to verify conditions (26)
and (27) without prior knowledge of the optimal solution z. The following corollary provides
this capability.

COROLLARY 1I: If
V& (.1)/3n, = 3g,(n.1)/8m, > 0,

(35) Jj=0,....,rni=1,...,p k=1, ..., n
forn € E" 2 0,and0< ¢ < T,
(36) FON 20 01T

then under the Constraint Qualification there exists an optimal solution (#,w) for Dual Problem
Asuch that w = zand G(Z,w) = V(7).

PROOF: We have from (8) and (35) that

H@is) =3 1 () IVhpEN.0IVgE).] >0 0< 1€ T,
=0 ey
and by (36) and the concavity of F that

FGt) —-8F(Z2), 2 F0:1)20 0<r<T
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From these results it follows that the conditions of Theorem 4 are satisfied. QED

THEOREM 5 (Complementary Slackness Principle): If Z and (Zw) are optimal solutions
for the Primal and Dual Problems A, then

T
(37) f() W () FE)dt = 0
and
T i
(38) f“ FUNFGwe) + [V G),0)ld = 0.

PROOF: Since z(r) 2 0 and F*(zw,t) + (Vo G (r1),nN] £ 0.0 < 1 £ T. it follows from
identity (17) that

.
[T RO + V6 G0N = 8.1 7.2 <0,
and therefore, by (337
7
LEw - V@ = [ #FGHd <0
Since wlry 2 0and FGo) 2 0.0 < 1 < T, it also foliows that
;
(39) f(l wW(OFGDd >0,
thus the equality in (37) is established.
Similarly, (33') and (39) imply that
5L (5w 2 0
and theretore, by (17}
7
S TP GERD + (VG .0ld 2 6
Since 0 2 0and FF*Ew) + [V (Fr ] <€ 0.0 <€ - < 7 we have
H
[ stk « (9ectla < o
and thus the equality in {38/ is established. Qb
THEOREM 6 (Kuhn-Tucker Conditions):  Assume that (35 and (36) are satisfiecd for

Primai Problem A. Then under the Constraint Qualification s an optimal solution 1f and onh
if there exists an m-vector function w such that

(i Fwn+Veztnnl <00 < T
~ ]
(i) j( FUNF G ~ (VoG Ol d = 0
!
(i) f( WO FGEDdr =0

v w20 0< 1€ Tandwl)=0.1>T

PROOE:
Necessiiyv The necessity af the conditions toliows oo abi ated Do NN
the » vector tuncton s of the optimas solaton o w b Lo T sl Sl s et

through (v

o ke oAl
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Sufficiency: Let z be feasible for Primal Problem A. Then since Vis concave
Viz) - V(@) < 8V(Z.z —2)
r
- [ 0 - TNV G0 .0l
Since z{s) 2 0, 0 < ¢ < T, it follows from conditions (i) and (ii) that
!
V) = V@ < - f 0 = ZOVF ERnd
and by (18), (25) and Fubini's Theorem (9]
r r
J, 20 =20y P Gind = [ RSz - D
By (i), (iii) and the concavity of F,
r /
_ f" WDSF(Fz — 3),di < — f“ »:;'(:1(r<:,n — FGO)dr
= — f“ w () Flz. 0 dr

which is nonpositive since w(r) 2 Oand F(zr) 2 0,0 € 7 < T Thus, F(2) € 1(3) and =is
an optimal solution for Primal Problem A. Q.ED.

7. EXAMPLE — WATER STORAGE PROBLEM

In the water storage problem posed in [4], the hydroelectric company incurred a penalty (f
it could not meet a prescribed demand for power. This penalty was characterized in the objec-
tive function

.
fn ${(DG) ~ Pt

where [0,7] represents a planning period of specified duration. D(¢) is the demand rate, P(r)
is the production rate of hydroelectric power, and  is the penalty function which was assumed
to be strictly convex. The imposition of such a penalty favors the consumer or a nuddieman
utility company which retails electric power to the consumers. In short, it characterizes a
"buyers market.”

If there is, in fact, a pending cnergy crisis. it secems appropriate to copsider a “scllers
market” where the demand for power exceeds production capacity and a premium is paid to the
hydroelectric company for any power which it produces beyond some prescribed level. In the
case where the hydroelectric company is supplying power directly to the consumer, these premi-
ums may take the form of increasing prices per unit beyond some allotment level When the
hydroelectric company is supplying a middleman, the premiums may represent an incentive pol-
icy which encourages maximum production during peak demand periods

The premiums to the hydroelectric company will be represented by

T
j:) (PG — AG))dr

where [0,T] represents the planning period, P(1) is the power production rate, 4 (1) is the
prescribed aggregate allotment or incentive level, and # is the premium function which s
assumed to be differentiable and concave with a positive slope at zero.

For the dynamics of the problem, we assume a confluent system of rivers supplying water
to a hydroelectric plant on the main stream with r of its tributaries also having their own
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hyvdroelectric plants. The variables and parameters which relate to the dam. reservoir and plant
on the main stream will be subscripted by 0, and those for the r dammed tributaries by /.
=1 ....r

We let (1, denote the initial store of water in reservoir jand #, the capacity of reservoir .
The rate of spillage and rate of discharge through the lurbines of dam jat time 7 are denoted by
5. (r) and d, (¢). respectively. The rates of inflow of water into the reservoirs on the dammed
tributaries are £ (1) j =1, ..., r, and that into the main reservoir from its undammed tribu-
taries is £,(1).

It is assumed that it 1akes a,, j = I, ..., runits of time for the water released from dam
1 1o reach the main reservoir and that there is no spillage or discharge through the dams on the
tributaries for at least a units of time prior to the start of the planning period, where
a = max [a,}]. The store of water in reservoir j al time 7can then be expressed as

1
Wi =10 + j:) €. — 5,01 — d, GV i’

for y=1. ..., r and

W, =Q,+ _f“' Enr’) = so(0') —dyl) + X (s, (" — ) + d (0 = a N dr

=1

for the main reservoir.

The power production rate for a given rate of discharge d is assumed 1o be proportional 10
d. In [4], it was necessary to assume the factor of proportionality to be unity. Here we allow
this factor to be proportional to the head of water in the reservoir, an assumption which is con-
sistent with constant turbine efficiency. The head is the difference h between the surface level
of the reservoir and the tailwaters below the dam and is therefore dependent primarily upon the
store of water W in the reservoir.

The relationship between /,(1). the head of reservoir j, and W, (1) will be represented by
h ) = At (W (1)), where /7 is an increasing concave differentiable function. The functions
At owe their concavity to the shapes of the reservoirs which are assumed to yield a continu-
ously disproportionate increase in reservoir surface area as the store of water increases. The
production rate for the jfth hydroelectric plant is then expressible as
p, () = d (D)o ht (W (1),

in which case the production rate for the entire system becomes

Pl1) = i p.).

s

Assuming the role of the hydroelectric company. we want to select our water storage pol-
icy (s.d) so as to maximize the premium payments aver the planning period. This problem
takes the form

maximize

!
mis.d) = f (P ~ A(D)dr
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subject to

0< 5 €8,
0< dU) €9,
0 W) <9

J=0...., rand

A0) < P

tor 0 £ 1 € T, where 8,(¢) is the maximum altowable spillage rate through dam ;and ¢ is the
turbine capacity of plant 4.

Through proper association of the terms of this model with those of Primal Problem A it
can be shown through application of Theorem 1 that feasibility ensures the existence of an
optimal water storage policy which will maximize the total premium payment.
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ABSTRACT

This paper considers the classical finite hnear transportation Problem (D and
two relaxations. (11} and (), of it based on papers by Kantorovich and Rubin-
stein, and Kretschmer. Pseudo-metric type conditions on the cost matnix are
given under which Problems (1) and (11) have common optimal value. and a
proper subsct of these conditions is sufficient for Problems (H) and (111} to
have common optimal value. The relationships between the three problems
provide a proof of Kantorovich's original characterization of optimal solutions
to the standard transportation problem having as many origins as destinations
The results are extended to problems having cost matrices which are nonnega-
tive row-column equivalent

1. INTRODUCTION WITH PROBLEM SETTING

Over 25 years ago Kantorovich in his classic paper, "On the translocation of masses” [4].
formulated generalized transportation problems which are continuous analogs of the well-known
transportation problem in the theory of finite lincar programming. He raised the question of
characterizing optimal solutions to those problems whose finite dimensional versions have the
same number of origins as destinations. As is well known, optimal solutions to the standard
finite dimensional transportation problem having "m" origins and "n" destinations are charac-
terized by means of a system of linear inequalitics involving m row numbers and » column
numbers which together comprise a feasible list of dual variables.

Within the finite dimensional context m = n, Kantorovich’s goal was to use only n
numbers in a linear incquality system characterization of an optimal solution rather than the
standard 2n (row plus column) numbers. In order to accomplish this, three conditions defining
a pseudo-metric were imposed on the cost coefficient matrix.  Actually, the triangle inequality
condition on unit costs is what Gomory and Hu later termed "reasonable costs™ in their network

*The work of the first author was supported in part by Natonal Science Foundation Grants ENGT6.0S191 and
EN(;78-25488
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studies [3]. Section 2. Violation of this particular condition is also related o the "more for less”
paradox in the transportation model, see Ryan [7].

The original application of the pseudo-metric conditions involved subtleties which were
fater clarified in Kantorovich-Rubinstein [5] but for a transformed version of the standard tran-
sportation problem, which we state as Problem Il in the next section. In attempting to give a
prooft of Kantorovich’s characterization, Kretschmer [6) introduced vet another transformation
of the standard problem, which we shall term Problem 1l in the next section.

The basic purpose of this paper is to delineate the key relationships between these three
problems: the standard transportation Problem 1, the Kretschmer transformed Problem !, and
the Kantorovich-Rubinstein Problem 111. The results we obtain depend on how the three
pseudo-metric cost conditions, denoted (C.1) through (C.3) in Sections 3 and 4. arc coupled
together.

Our muin application is 1o obtain a proof of the originally sought for characterization of
optimal solutions of the standard transportation problem where the number of origins cquals
the number of destinations. We are not prepared at this time however 1o state that we have
industrial or public sector applications of the type 11 or type Il transportation models.

2. THE KANTOROVICH-RUBINSTEIN AND KRETSCHMER TRANSFORMS
OF THE STANDARD TRANSPORTATION PROBLEM

Letc¢,, a and b,(i=1, ..., m j=1, ..., n) be nonnegative real numbers and assume
that g, and b, satisfy

(.1 Ya=36>0

1= =1

The original transportation problem may be expressed as follows:

(I) Determine the minimum value M of

(1.2) 3 Y x,

(1.3) Yx,=a G=1 ..., n)
=1

x,=b G=1 ....n)
r=|

Let us consider the following transportation problems which were studied in [5] and [6]:

(ID Determine the minimum value N of

L "

(14) Y 3 ix, + )

1= =]

subject to the condition that x,, and y,, are nonnegative and

€1.5) Y, -y)=a G=1 ..., n),

1=1

Y, -v)=b, G=1.....n.

1]
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(1) Determine the minimum value V of
n n
(16) 2 2 Cij Zij
j=] jm]
subject to the condition that z; are nonnegative and

(17) iz,j—'izj,=a,-—b,- (I=l,, ”).
Jj=1

J=1

Program 1 of course is the classical transportation problem which may be solved by the
well-known row and column number method ([1),12}) and other more modern, large scale pro-
gramming methods. The row and column number method easily extends to solving Program 1.
On the other hand, the structural matrix of Program Il is a network incidence matrix, and so
III is an uncapacitated network problem.

It is clear that ¥ £ Mand N < M and in this sense Problems 1l and III are relaxations of
Problem I. We shall study when one of the equalities V = N, V = M, and M = N holds.

3. THE EQUALITY N = V OF PROBLEMS 11 AND I11
First we have

LEMMA 1: The inequality V' < N holds if the following condition is fulfilled:
(C.1) c; = ¢, for all i and ji.

PROOF: There exists an optimal solution x, and y, of Problem (1), i.e., x, and y, are
nonnegative and satisfy (1.5) and

N = i i ¢ (x; + y,).
f=] j=1
Then

n n
Zx,j"'zyj, =Qa, — b,"

J=1 J=1

n n
XX+ Xy
j=1 J=1
Taking z; = x;, + y;, we see that z; are nonnegative and satisfy (1.6), so that by condition
(C.1)

n

2 CU' Z,'j - N,
1 J=1

M-

Vg
i

THEOREM 1: The equality ¥ = AN holds if condition (C.1) and the following condition
are fulfilled:

(C.2) c; =0 forall i

PROOF: There exists an optimal solution z, of Problem (11}, i.e., z;, are nonnegative
and satisfy (1.7) and

"
V- tzq,z,,.

i) jol
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Then

n

3z, + Ez +a,=d 20

1=l

Let us take x, = 0if i # j and x, = d; and put y; = z,. Then x, and y, are nonnegative and
satisfy (1.5). so that

N n

N < 2 2 ¢ lx, +y,) = Z Z =V

i=] jm| (=1 =1

by conditions (C.1) and (C.2).

We show by an example that the equality N = V does not hold in general if we omit con-
dition (C.2).

EXAMPLE I: Let n = 2 and take
cu=cenp=1 cp=c=2,
ay=1, ay=2 b =2 b=1.

Then we easily see that ¥V =2 and M = N = 4.

4. THE EQUALITY M = N OF PROBLEMS I AND II

Next we show that the equality M = N does not hold in general even if both conditions
(C.1) and (C.2) are fulfilled.
EXAMPLE 2: Let n = 3 and take
en=cp=cu=0 cp=1cy=20
cn=cy=cy=cy=1
a,=3/2, ay=1/2, ay= 1/4,
by=by=1. by = 1/4.
By special methods of linear programming (see, for instance [1]), we see that M = lzl and an

optimal solution of Problem (1) is given by x;; =1, x5, = 1/2 x;;=x3= x;;, = 1/4 and
Xy = X3 = X3=x33=0. We have N = 1. An optimal solution of Problem (II) is given by
xp=Loxp=12, xpy=xu=1/2 xp=xpy=xpn=xy=x53=0,yy=1/4and y, =0 if
G, j) = (3,3).

Our main resuit is the following one.

THEOREM 2: The equality M = N holds if the following condition is fulfilled:
(C.3) €y € G+ 0y + g foralli, 4. pogq.
PROOF: There exists an optimal solution x, and y, of Problem (iI}. In case

z, = X, — ¥, is nonnegative for each i, j. we sec thal z, is a feasible solution of Problem (1). so
that

M< t z". 2y S i i ¢ (x, +y)=N

e gyl t=] je=]
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We consider the case where some x; — y,; are negative. We may assume that min(x,, y,j) =0
for all i and j. There exist p and g such that 0 = x,, < y,,. Then we have by (1.5)

"

n
Xiqg 2 Vpq and prf 2 Vn
1 Jj=1

jom

Let us define 4,, B; and d;; by
A, = B, =0,

n n
A= x Vel Lxig G = p), Bj= x50/ 3. x,, U # q).
=1 =

dj= AB/yp.
Then
n n
@.n zdij=Ai§xiq' EduaBj.ﬁpr'
j=1 =1
n n
i=1 j=1
We define x;; and y;; by
(4.3) X = x; +d if i = pandj # gq,
Xy = X, — B; if j # q,
Xig ™= X;g — A, if i & p,
Yij = Vi if i # porj# q.

Xpg ™= Ypg = 0.

Then x;; and y;; are nonnegative and satisfy (1.5) and

n n
N<Y Y olx;+y)
i1 jm1
n n n

- 2 2 CU(XU +yu) + zi dijlclj — Cig ~ (g ~ CP.I]

im] j=1 i=1 g1
n n

<Y Y g +y)=N
=1 jeml

by condition (C.3). Repeating the above procedure (4.3) a finite number of times,t we obtain
x% which are nonnegative and satisfy (1.3) and

M < i i Xy S i i c;(x; + y,) = N.

jm] j=1 i=] jel

Hence, M = N.

THEOREM 3: Let k,, f, and g be nonnegative numbers and assume that condition
(C.3) holds for k instead of ¢;. If ¢, = k, + f; + g, then M = N.

Frme
This number is at most the number of {y, > 0.
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PROOF: Denote by M (k) and N (k) the values of Problems (1) and (I1) respectively if
¢, are replaced by k;. Then we have M = M (k) + Cj, with

n n
Cr = 2 Ja; + z &b,
=1

-1

Let x,, and v, be nonnegative and satisfy (1.5). Then

n n

p 2 ¢, x, +v,) = 2": 2' k,(x, +v,) +

1=l =1 =] =1
n
b, + 2 Yy
1=

2 " 1 n
2/: a + z wl+ Z g
= =1 J=1
2 i zn: k,,(,\’u + ,V,,) + (',K > Nk + le
=1 =1

Thus, N 2 N(k) + C,,. Since Nlk) = M(k) by Theorem 2, we have N > M(k) + ‘
Cp, = M, and hence M = N. :

As is well known, two transportation problems of type (I) with costs {c,] and
{c, + f, + &1 respectively, are equivalent for any list of real numbers {£}, {g}. i=1, ..., m
Jj=1. ..., n The following example shows that the nonnegativity of all the /, and g, is

required in Theorem 3.

EXAMPLE 3. Let n = 2 and take k” =0, k|2= 1/2‘ k2|= 1/2, k22= 0, a,= I, a .
by=1/2, by=3/2, fi=1, f,=-5/2, g, =2, g2="12. Then, M(k) = N(k) = 1/4 while
N=9/2<5=M

5. KANTOROVICH'S THEOREM FOR PROBLEM (1)
The finite version of Kantorovich's Theorem [4] can be written as follows:

A feasible solution x,, of Problem (I) is an optimal solution if and only if there exist
numbers u, such that
5.1 lu,— u,| < ¢, foreach i, j

(5.2) u —u, =c,; ifx, > 0.

We show that this theorem is not valid as it stands. In fact, let us recall Example 2 and
let x,, be the optimal solution obtained there. If there exist numbers u, which satisfy (5.1) and
(5.2), then we must have

Uy — U= = 20,
Uy~ )= Cyn= l.

Uy~ uUy= 1= 1.
This is impossible.

In order to give another proof of Kantorovich's Theorem, Kretschmer considered Prob-
lem (11) and asserted ¥ = M without any assumption. Notice that N < M in Example 2.
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Kantorovich’s Theorem was amended by Kantorovich and Rubinstein [5; Theorem 3] in
the following form:

THEOREM 4: Assume that conditions (C.1), (C.2) and (C.3) hold. Then a feasible
solution x,, of Problem (I1I) is an optimal solution if and only if there exist numbers u, which
satisfy (5.1) and (5.2).

Under conditions (C.1) and (C.2), the dual problems of Problems (I1) and (11I) coincide
and Theorem 4 is an immediate consequence of the well-known duality theorem applied to
Problem (11). Thus, condition (C.3) can be omitted in Theorem 4.

Notice that conditions (C.1), (C.2) and (C.3) hald if and only if the cost ¢, is a pseudo-
metric, i.e., ¢, satisfies conditions (C.1) and (C.2} and the following condition

(C4) ¢, € cx + o, foralli j k.

With the aid of Theorems 2 and 4, we have

THEOREM §: Assume that conditions (C.1), (C.2) and (C.3) hold. Then a feasible
solution x,, of Froblem (I) is an optimal solution if and only if there exist numbers «, which
satisfy (5.1) and (5.2).
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A NETWORK FLOW APPROACH FOR CAPACITY
EXPANSION PROBLEMS WITH TWO FACILITY TYPES

Hanan Luss
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Holmdel, New Jersey

ABSTRACT

A deterministic capacity expansion model for two faciliy types with a finite
number of discrete time periods is described. The model generalizes previous
work by allowing for capacity disposals, in addition 1o capacity expansions and
conversions from one facility type 1o the other. Furthermore. shortages of
capacity are allowed and upper bounds on both shortages and idle capacities can
be imposed. The demand increments for additional capacity of any type in any
time period can be negative. All cost functions are assumed (0 be piecewise,
concave and nondecreasing away from zero. The model is formulated as a
shortest path problem for an acyclic network, and an efficient search procedure
is developed 10 determine the costs associaled with the links of this network

INTRODUCTION

In a previous paper [9], we described a deterministic capacity expansion model for two
facility types. The model has a finite number of discrete time periods with known demands for
each of the two facilities in any period. At the beginning of each period, facility i(i = 1,2)
may be expanded either by new construction or by converting idle capacity of one facility to
accommodate the demand for the other facility.

In this paper, we extend our previous work by allowing for the reduction of facility size
through capacity disposals. Furthermore, shortages of capacity are allowed and upper bounds
on idle capacities and shortages may be imposed. These generalizations allow us 1o deal with
more realistic situations. Capacity disposals are often initiated due to high holding cost of idle
capacity when the cumulative demand decreases over some successive periods. Capacity shor-
tages may be attractive when capacity may be temporarily rented or imported from other
sources. Also, in some applications it may be economical to permit temporary shortages and
pay a penalty for unsatisfied demand, rather than expanding the facilities at that time. Finally,
upper bounds on idle capacity and shortages are usually imposed by management.

The costs incurred include those for construction of new capacity, disposal of existing
capacity, conversion, holding of idle capacity, and for having capacity shoriages. As in [9].
conversion implies physical modification so that the converted capacity becomes an integral part
of the new facility and is not reconverted automatically at the end of the period. The capacity
expansion policy consists of timing and sizing decisions for new constructions, disposals, and
conversions 50 that the total costs are minimized.
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The model is useful for communication network applications, such as the cable sizing
problems examined in [9]. Suppose the demands for two cable types is known for the next T
periods. Furthermore, suppose the more expensive cable can accommodate both demand
types, whereas the cheaper cable can be used only to satisfy its associated demand. Since the
construction cost functions are often concave, reflecting economies of scale, it can become

attractive to use the more expensive cable for future demand for both cables.

Thus, careful

planning of the expansion policy is needed. A similar application is the planning of capacity
expansion associated with communication facilities which serve digital and analog demands.
Other areas of applications include production problems for two substitutable products, and
inventory problems of a single product produced and consumed in two separate regions; see 19}

for more details.

Many capacity expansion models and closely related inventory models have been
developed for the single facility problem with a finite number of discrete time periods. The
first such model was proposed by Wagner and Whitin [13] who examined a dynamic version of
the ecunomic lot size model. Many authors extended this model; for example, Manne and
Veinott {11), Zangwill [16] and Love [8]. Zangwiill used a network flow approach, and Love
generalized the model to piecewise concave cost functions and bounded idle capacities and

shortages.

Several models and algorithms for two facility problems have been developed. Manne
{10}, Erlenkotter [1,2), Kalotay {5}, and Fong and Rao [3] examined models in which it is
assumed that converted capacity is reconverted automatically, at no cost, at the end of each
period. Kalotay (6], Wilson and Kalotay [14], Merhaut [12], and Luss [9] examined models in

which converted capacity is not reconveried auiomatically at the end of each period.

In Section 1 we describe the generalized model. The algorithm in [9] is extended and
used to solve the new model with the additional features described before. In Section 2 a shor-
test path formulation is presented, and in Section 3 some properties of an optimal solution are
identified. These properties are used to compute the costs associated with the links of the net-
work constructed for the shortest path problem. In Section 4 the solution is illustrated by a

numerical example, and some final comments are given in Section 5.

1. THE MODEL

The model assumes a finite number of discrete time periods in which the demand incre-
ments, new constructions, capacity disposals, and capacity conversions occur instantaneously
and simultaneously immediately after the beginning of each period. We define the following

notation:
i — index for the two facilities.
t — index for time periods (r = 1,2, ..., T) where Tis the planning horizon.
r — the increment of demand for additional capacity of facility / incurred

immediately after the beginning of period . The r,’s may be negative, and

for convenience are assumed to be integers.

2
Rt = ¥ r,. fort; € 1y

' =1

X, — the amount of new construction (x, > 0), or capacity disposal (x, < 0),
associated with facility i immediately after the beginning of period +.

er emaad amiat in e o e e
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v — the amount of capacity converted immediately afier the beginning of period
t. y, > 0(y, < 0) implies thal capacity associated with facility 1 (facility 2) 1s
converted to satisfy the demand of the other facility. Once converted. the
capacily becomes an integral part of the new facility.

I, — the amount of idle capacity (I, > 0), or capacity shortage (/, < 0). associ-
ated with facility / at the beginning of period r (or equivalently. at the end of
period + — 1, ¢t =12,3, ..., T + 1). We assume that initially there is no idle
capacity or capacity shortage, thatis, /,, = 0.

1, — lower bound on /,, that is, the maximum capacity shortage of facility i
allowed at the beginning of period ¢ the /,’s are assumed 1o be integers and
— oo < 1“, < 0.

wy — upper bound on the idle capacity of facility / at the beginning of period 1.

The w;’s are assumed to be integers and 0 < w, < o,
¢,(x,) — the construction and disposal cost function for facility i at time period .
&)  — the conversion cost function at time period 1.

h (1 ,41)— the cost function associated with idle capacity, or capacity shortage. of facil-
ity icarried from period  to period ¢ + 1.

All cost functions are assumed to be concave from 0 to o and from 0 to —oo, but not
necessarily concave over the entire interval [—oo, oo]. Such functions are called piecewise con-
cave functions, see Zangwill {15]. All cost functions are also assumed to be nondecreasing
away from zero; for example, c,(x,) is nondecreasing with x;, for x, > 0, and nondecreasing
with —x, for x;,, < 0. For convenience, we assume that ¢,(0) = g,(0) = h,(0) = 0.

The problem can be formulated as follows:

(1.1) Minir;nize ETI ﬁ]c,-,(x,,)+h.-,(l,,,+1) +&(Vr)l
Xjgo¥s tm=] | im
(1.2) Loa=0L,+x,—y —ry,
(1.3) Iy =1y + x5, +y, = ry
M r=12 ..., T
14 1, <1, <w, [ i=12
(15 1,=0
(1.6) I,1,,=0

The objective (1.1) is to minimize the total cost incurred over all periods. Equations
(1.2) - (1.3) express the idle capacity or capacity shortage /,,,, as a function of /,, the actions
undertaken at period ¢, x, and y,, and the demand increments r,. Constraints (1.4) specify the
bounds on idle capacities and capacity shortages, and Equation (1.5) is introduced by assump-
tion. Constraint (1.6) /, 7., = 0 implies that idle capacity or capacity shortages are not allowed
after period 7. Such a constraint is not restrictive since one can add to problem (1) a fictitious
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period 7'=T+1 with rp = max R,(1,1) — R(1,T) (yielding R/(1,T") 2 R (1,1} V),
!

Iy =0,wp =00 and c(:) = hp () = gr(-) = 0. (I~ is fixed at zero since no shortages are
allowed at the end of period 7). This allows us to fix I ;,, at zero since then there always
exists an optimal solution with [, ,, = 0. To simplify notation, we assume that period 7T in
formulation (1) is the added fictitious period.

The constraints (1.2) - (1.6) form a nonempty convex set. Since each term of the objec-
tive function is nondecreasing away from zero with a finite value at zero, there exists a finite
optimal solution. Furthermore, suppose each of the variables x,, y,, and /, is replaced in for-
mulation (1) by the difference of two nonnegative variables, for example, x, = x;, — x, where
x, 2 0 represents constructions and x, 2> 0 stands for disposals. In that case, the objective
function becomes concave on the entire feasible region; hence, there exists an extreme point
optimal solution. From Pages 124-127 in Hu [4], the constraints (1.2) - (1.3) are totally uni-
modular. Thus, since r,, /, and w, are assumed o be integers, such an extreme point solution
consists of integers. In the next sections we describe an algorithm which finds an optimal
extreme point solution.

2. A SHORTEST PATH FORMULATION

Since all cost functions are nondecreasing away from zero, it can be shown that there
exists an optimal solution in which

) 11, € max[R (7\,T) + Ry(z;,, D} = b vi, .

Tl,fz

However, usually, better bounds than those given by (2) can be assigned. To simplify the
presentation, we assume that the lower and upper bounds on the /, variables satisfy w, < b
and /, 2 —bfor all values of /and .

Generalizing the concept of capacity point in [9], we define a capacity point as a period tin
which 1, = 0, or /,, or w, for at least one value of i Since an extreme point optimal solution
consists of integers, the set of capacity points is defined as follows:

G Ihw=15=0

3.2) l|, = 11,.0,W1, and 12, = 12,.0,W2,

(3)
(33) l|,= Il,,O,W“ and Iz, = Iz, + l, ey _l,l, e W2 '
(3.4) I),=lz,,0,W2, andl|,=I|,+l. ....—l,l, e Wi . i
r=23 ..., T

(35) II.T«H = 12.1‘+| =0

The capacity point values can be conveniently specified by a single parameter «,. For
example, a, = 1,2, ..., 9 can be used to specify the combinations given »y (3.2), elc. A
complete example of a special case can be found in {9].

The set of capacity points can be limited to those satisfying

(4) 4.1) l|, + I;, < R|(I,T) + Rz(l,T)
4D 1, + 1,2 —-max [Ry(r t—1)+ Ry 0= 1]

1€ -l

|
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Equation (4.1) states that the total idle capacity at the beginning of period 1 does not exceed the
cumulative demand from period rto T. Equation (4.2) restricts the maximum capacity shor-
tages 10 the maximum demand increase from any period prior to ¢+ — 1 up 10 period ¢ - |
Clearly. there exists an optimal solution which satisfies (4).

We now describe a shortest path formulation which can be used to solve Problem (1)
Let

d, la, a,) — the minimal cost during periods w, 4 + 1, ..., v associated with an
extreme point solution of (1) when v and v + 1 are two successive capacity
points with values defined by «, and «,,,. More specifically:

v 2
(5)  dylay,, ayy) = minimum|Y IZ e x,) + h, U )+ 200
Ny =t li=1
such that
(i)  Constraints (1.2) and (1.3) are satistied for ¢t = w, v + 1, ..., v,

G) I, <@, <woandl,# 0fori=12andr=wu+1, u+2 ...,V
(iii) I,, and I,, are defined by «,,, and [, ., and I, ,,, are defined by a,. |,

(iv) x, and y, for ¢t =u, u + 1, ..., v satisfy the necessary conditions (to be developed
later) for an extreme point solution of (1).

Suppose that all subproblem values d, l« . .y )) are known. The optimal solution can then
be found by searching for the optimal sequence of capacity points and their associated values.
As shown in Figure 1, Problem 1 can be formulated as a shortest path problem for an acyche
network in which the nodes represent all possible values of capacity points. Each node is
described by two values (1, «,) where 1 is the time period and «, is the associated capacity point
value. From each node (u,«,) there emanates a directed link 10 any node (v + l.a,.} for
v 2 u with an associated cost of d,. (a,, @yiy).

Let ¢, be the number of capacity point values at period 1. Clearly, ;= (;,; = 1.and (,
for all other periods can be obtained from Eguations (3) and (4). The total number of hinks A
in the shortest path problem is

I I+
(6) N=YC|Y
=1 j=r41

Since most of the computational effort is spent on computing the d, o, o, ) values, 1t s
important to reduce N, if possible. One way, of course, is to reduce the values of ¢ through
the imposition of appropriate bounds /, and w,.

The shortest path problem can be solved using various algorithms. Stnce the network s
acyclic a simple dynamic programming formulation can be used. Let o, be deseribed by the set
of integers 1.2, ... . C,, where a, = | represents /,, = [;, = 0. Furthermore, let /,{a.] be the
cost of an optimal policy over periods 1, + + 1, ..., T, given that period £ s a capacity point,
and that /,, and /,, are specified by «,. The following dynamic programnung formulaton is
then obtained:

Sralape)) =0, apy =1
(7 Sola,) = r(nin ld, (o) + Foarlag, 1

u=TT-1, ... .1
a, =12, ... C,.




602 H. LUSS

FIGURE 1. The shoriest path formulation

The first term of the minimand is the minimum cost of the optimal policy during periods u,
u+1, ..., v, given that v and v + | are two successive capacity points with values a, and
a,,;. The second term is the optimal cost for periods v+ 1, v+ 2, ..., T, given a,,,.

3. SOLUTION OF THE SUBPROBLEMS d,,(a,,a,,,)

Most of the computational effort is spent on computing the subproblem values. As shown
in (9], whenr, 2 0, x, 2 0, [, = 0 and w, = o for all /and ¢, the subproblems are solved in a
trivial manner, however, when the r,’s are allowed to be negative the effort required to solve
the subproblems increases significantly. The additional modifications needed to solve the sub-
problems d,,(a,,a,,,), as defined by (5) for the generalized model, require a more careful
analysis than needed in (9], however, the resulting computational effort appears to be about the
same.

To compute the subproblem values d,, (a,.a,, ), it is convenient to describe Problem (1)
as a single commodity network problem. The network, shown in Figure 2, includes a single
source (node 0) with a supply of R ,(1,7) + R,(1,T). There are 2T additional nodes, each
denoted by (if) where i specifies the facility and r specifies the time period. At each node (i)
there is an external demand increment r,, possibly negative. The nodes are connected by links,
where the flows along these links represent the constructions, disposals, conversions, idle capa-
cities, and capacity shortages. The flows on each link can be in either direction, and the link
direction in Figure 2 indicates positive flows. The nodes are connected by the following links:

~ A link from node O to each node (it} with flow x,. x, is positive if the flow is from
node 0 to node (i.7), and negative otherwise.
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— A link from each node (i1) to node (ir + 1) with flow /,,,,. 1,,., is positive if the
flow is from (ir) 10 (ir + 1) and negative otherwise.

— A link from each node (1.r) to node (2,r) with flow ¥,. », is positive if the flow is
from node (1,7) to (2,1), and negative otherwise.

As discussed before, we are interested in finding an optimal extreme point solution to a :
modified version of Problem (1), in which each of the variables x,. y,. /, is replaced by the ‘
difference of two nonnegative variables. It can be shown that a feasible flow in the network
given in Figure 2 corresponds to an extreme point solution of Problem (1) modified as
described above, if and only if it does not contain any loop with nonzero flows in which all /, J
flows satisfy /, < I, < w, and I, = 0. i

Concentrating upon a single subproblem, as shown in Figure 3, one may observe that a
feasible flow does not contain such loops if and only if the following properties are satisfied:

(8.1) x, x,, =0 (1, = 1), i=1,2
(8) (8.2) vy, =0ty &= 1)), u<t t), hSv

(8.3) xy,, Xz, ¥, = 0.

For example, suppose (8.3) is violated and | < 1; < 3, then xy, . 1y, vh o Dy v By
I, 1. - T4, xy form a loop with nonzero flows and all relevant /, values satisfy
I, <1, <w,and [, = 0.

I-quation (8) implies that in the optimal solution of d, (., ) there is at most one new
construction or disposal for each facility (8.1), and at most one conversion (8.2). Furthermore.
11 two constructions or disposals (one per facility) are being considered. conversion 1s then not
allowed (8.3).

'

oon s libindde i
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FIGURE 3. A network flow representation of a subproblem

Let D, be the capacity change of facility i during periods w,u + 1, ..., v, thatis:
(9) D/" i,v+l+Ri(u'V)_[iu» [ =~ 1,2
or, equivalently
v
(10) D=3 xy~y

=u

v
Dy= 3, x5 + .
1=u
Let ¢, and 1, be two time periods ¥ £ (7,,1) € v. From the optimal properties (8) shown
above, the possible policies associated with an optimal solution to any subproblem d, (a . ay, )
can be restricted to three different policies. These policies are summarized in Table 1 below.

To illustrate the table, let us concentrate on the column Dy £ 0 and D; 2 0. Policy (a)
indicates a single disposal of D; capacity units of facility I, and a single construction of D, units
of facility 2. Policy (b) implies a single construction of D; + D, of facility 1 if D. + ), 2 0, a
single disposal of D, + D; of facility 1 if D, + D; £ 0, and a single conversion of D, units
from facility | to facility 2. Obviously, if D, + D, = 0, no constructions or disposals take
place, and if D, = 0, no capacity is converted. Finally, policy (c) consists of a single construc-
tion of D; + D, capacity units of facility 2 if Dy + D, 2 0, a single disposal of Dy + D, units
of facility 2 if Dy, + D; € 0, and a single conversion of — D, from facility 1 to facility 2.

The optimal solution of a subproblem 4, («,,a,,,) is therefore obtained by the following
procedure:

(1) For each of the policies (a), (b), and (¢} in Table 1, find the optimal values of r, and
t;, which minimize d,.{a, a,.;) as given by Equation (5), while satisfying condi-
tions (i) - (iv) given below Equation (5). If no feasible values of ¢, and 1, exisi, set
the value of the corresponding policy (o oo.
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TABLE 1. Possible Policies for Optimal Subproblem Solutions
[ 0> T
D, D, D20 D, <0 D 20 D <0
Policy D,20 D, 20 D, <0 D,< 0
A= Dox, =007 construction|  disposal construction | disposal
@  xy, =Dy xp, =01 %1, construction | construction | disposal disposal
»=0WV1
xi,, = Dy + Dy, xj, = 01 # ¢]construction [construction |construction | disposal
or disposal | or disposal
®  y,=Dy y=01#1y CONVErsion | cCOnversion | conversion conversion
fromlto2]|fromlto2|tfrom2tol [from2tol
Xy, =0W1 - -
Xy, = D, + D,, x,, =01 # 1[construction {construction {construction | disposal
or disposal | or disposal
(c) Yo=—=D, y=01%y conversion | conversion | conversion jconversion
from2tol|from1lto2 | from2tol [from 10?2
xy, =0¥¢ |

(2) Choose as the optimal policy the best of those found in Step (1). If none of the policies

is feasible, 4, (a,, a,,|) = .

The procedure above may involve spending a significant amount of computation on
finding all feasible policies and comparing the costs associated with these policies.

4. A NUMERICAL EXAMPLE

As an illustration, we solve the capacity expansion problem shown in Figure 4
1,3 = 1,4 = 0 by assumption, thus, a fictitious period is not added. The cost functions are given
in Table 2 below.

The shortest path formulation is shown in Figure 5. The capacity point values are given
inside the nodes in terms of /,, and /,, rather than a,. Using Equation (4.1). several capacity
point values are omitted in periods 2 and 3. Furthermore, all links from period r=1 10
periods + = 3 and 4 are omitted since there is no feasibie solution 10 the associated subprob-
lems with [, < I\, < w,, and /|, # 0. The number associated with cach link is the optimal
solution of the corresponding subproblem. The shortest path is marked by stars.

Consider the subproblem o {«,. a,) where «, represents the capacity point value
Iy=1; =0, and a; represents [/, = [, = 0. By Equation (9, D;=1and D, =1 Using
the results of Table 1, policy (a) yields x), = x;; = 1 with a total cost of 68, policy (b) vields
x;1 =2 and v, = 1 with a cost of 46, and policy (¢) yields v,y = 2 and v = -1 with a cost of
45. Hence policy (¢) is the optimal one.

To illustrate further. consider d;\la,, a,). where a; stands for /,, = -1 and /,, = 0. and
a, stands for /;y = [,y = 0, so that Dy =} and D, =0
either x;; = 1 or x;, = 1
Hence, policy (a) implies x|, = | with construction and holding cost of 43 2
the same solution as policy (a), and policy (¢) results in x;; = 1 and v, =
of 40.5; hence. policy (¢) is optimal for that subproblem

From Table 1. pobicy (a) imphies that
However, if x,; =1 (and x;; = 0) then /), = 0 so that d,,() = =

Policy (b) viclds
1 with a total cost
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Ficure 4. A network flow representation of the example
TABLE 2 — The Cost Functions
- function ho1, )
. cy,leyy) 2 (xg) &)
argument i=1,2
positive (30 + 8 x,,)0‘9’“' (20 + lez,)O.‘)"' SI,',”O.()"' 0
zero 0 0 0 0
negative 6-09"" 5-09"! -10/,,,,09' ' | =5,09" !
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FIGURE 5. The shortest path problem for the examnple

Finally, consider dylaj; ay) with a; standing for I, = I, =0, and a, standing for
I14= I, = 0. From Table 1, since D, = D, = 0, all decision variables are zero in all three pol-
icies and the total costs incurred are equal to 9.

After solving the subproblems for all the links of Figure 5, the shortest path can be found
using the dynamic programming formulation (7) or any other shortest path algorithm. The ﬂ
shortest path in this example is 54 and consists of two links. The first link connects node
Iyy = I =0 to node /;; = I, = 0, and the second link connects node /,, = 15, = 0 10 node A
I14= I4= 0. The optimal policy of the entire problem is x; = 2, v, = —1. with all other

decision variables x, and y, being equal to zero.

5. FINAL COMMENTS

This paper generalizes our previous work [9] by allowing for capacity disposals and capa-
city shortages. Furthermore, bounds on idie capacities and capacity shortages can be imposed.
The model is formulated as a shortest path problem in which most of the computational effort
is spent on computing the link costs. Using a network flow approach, properties of extreme
point solutions are identified. These properties are used to develop an efficient search for the
link costs.

Further generalizations may include bounds on new constructions and capacity disposals.
and operating costs which depend on the facility type and time period  As shown bv several
authors, for example Lambrecht and Vander Eecken (7], bounded constructions or disposals
complicate considerably even the singie facility problem. Introducing operating costs may
require major changes in the algorithm since the amount of each capacity type used 1o satisfy
the demand in each period affects the total cost
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Finally, negative costs for disposals (credit for salvage value) can be incorporated for cer-
tain cost functions ¢, (x,) for which the optimal solution would be finite. For example. cost
functions in which the credit per unit of disposed capacily is always smaller than the construc-
tion cost per unit of capacity. In general, however, cost functions ¢, (x,) that are negative for
x, < 0 may result in an unbounded solution.
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ABSTRACT

This paper considers the problem of locating multiple new facilities in order
to minimize a total cost function consisting of the sum of weighted Euclidean
distances among the new facilities and between the new and existing facilities,
the locations of which are known. A new procedure is derived from a set of
results pertaining to necessary conditions for a minimum of the objective func-
tion. The results from a number of sample problems which have been exe-
cuted on a programmed version of this algorithm are used to illustrate the
effectiveness of the new technique.

1. BACKGROUND

It was as early as the 17th century that mathematicians, notably Fermat, were concerned
with what are now known as single facility location problems. However, it was not until the
20th century that normative approaches 1o solving symbolic models of these and related prob-
lems were addressed in the literature. Each of these solution techniques concerned themselves
with determining the location of a new facility, or new facilities, with respect to the tocation of
existing facilities so as to minimize a cost function based on a weighted interfacility distance
measure.

If one studies a list of references to the work done in the past decade involving facility
location problems it becomes readily apparent that there exists a strong interdisciplinary interest
in this area within the fields of operations research, management science, logistics. cconomics.
urhun planning and engineering. As a result, the term "facility” has taken on a very broad con-
notation 1n order to suit applications in each of these areas. Francis and Goldstein {4] provide a
fairly recent bibliography of the facility location literature. One of the most complete
classifications of these problems is provided in a book by Francis and White [5].

*This work was supported by ihe National Research Council of Canada under Grant A4414 and by an Ontano Gradu-
ate Scholarship awarded to Paul Calamai.
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This paper concerns itself with the development of an algorithm for solving one particular
problem in the area of facility location research. The problem involves multiple new facilities
whose locations, the decision variables, are points in E, space. The quantitative objective is 10
minimize the total cost function consisting of the sum of weighted Euclidean distances among
new facilities and between new and existing facilities. The weights are the constants of propor-
tionality relating the distance travelled to the costs incurred. It is assumed that the problem is
"well structured” [3].

The Euclidean distance problem for the case of single new facilities was addressed by
Weiszfeld [13], Miehle [10}, Kuhn and Kuenne [8], and Cooper [1] to name a few. However,
it was not until the work of Kuhn {7} that the problem was considered completely solved. A
computational procedure for minimizing the Euclidean multifacility problem was presented by
Vergin and Rogers [12] in 1967, however, their techniques sometimes give suboptimum solu-
tions. Two years later, Love [9] gave a scheme for solving this problem which makes use of
convex programming and penalty function techniques. One advantage to this approach is that it
considers the existence of various types of spatial constraints. In 1973 Eyster, White and

Wierwille [2] presented the hyperboloid approximation procedure (HAP) for both rectilinear

and Euclidean distance measures which extended the technique employed in solving the single
facility problem to the multifacility case. This paper presents a new technique for solving con-
tinuous unconstrained multifacility location problems involving Euclidean distances.

2. PROBLEM FORMULATION

The continuous unconstrained multifacility location problem involving the J, distance
measure can be stated as follows:

Find the peint X*7=(X*{, ..., X*T)in E;, to
n m
(P1) minimize fF(X) = Y vy llX, - X, + X X w X, — 4l
1<j<k<n =1 =

where
n A number of new facilities (NF’s).
m A number of existing facilities (EF’s).
X7 = (x;; x;2) A vector location of NF; in Ey, j=1, ..., n.
AT = (a;y a;y) A vector location of EF, in Ey, i=1, ..., m.

Vi« A nonnegative constant of proportionality relating the /, distance between NF, and NF,
to the cost incurred 1 € j < & < n

w, A nonnegative constant of proportionality relating the /, distance between NF, and EF, to
thecostincurred 1 € j < ml<is<m

X, = X, = Ux;y — x 1P + |x,2 ~ xe2l?) /% A I, distance between NF, and NF,.
X, — 4,0l = {Ix;; — a11? + |x;2 — 4,211V A |, distance between NF, and EF,.
Note that we make the assumption that v, = vy, for jk = 1, ..., n Substituting p = |

and p = 2 in Problem P1 respectively yields the rectilinear distance problem and the Euclidean
distance problem.

i i,
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For the purpose of this paper Euclidean distance will be the measure used between facili-
ties located as points in E; space. The objective function becomes

minimize f(X) - 2 Vik l(x_'” - Xkl)z + (.X:,z - xkz)z)l/z
X IS j<k<n

(P2) + i i wi {0y — a)? + (x;y — a3V

J=1 i=1

The techniques presented in this paper can also be used for problems involving facilities located
in three-dimensional space.

3. NEW FACILITY CATEGORIZATION

If we consider a current solution to Problem P2 we can think of each new facility as being
in one of the following distinct categories:

(1) Unique Point (UP)

A new facility in this category occupies a location that differs from all other facility
locations.

(2) Coinciding Point (CP)

A new facility in this category occupies a location that coincides with the location of
an existing facility but differs from the current locations of all other new facilities.
Thus, each new facility in this category has associated with it some existing facility
which has the same vector location.

(3) Unique Clusters (UC,, ..., UCnyc)

All new facilities in the kth unique cluster (k = 1, ..., NUC) occupy the same vec-
tor location. This location is distinct from all existing facility locations as well as the
current locations of new facilities that are not classified in this cluster.

(4) Coinciding Clusters (CCy, ..., CCn¢c)

All new facilities categorized in the kth coinciding cluster (kA = 1, . | NCC) occupy
the same vector location. This location coincides with the location of some existing
facility and differs from the current locations of all new facilities that are noti
classified in this cluster. Each of these coinciding clusters of new facilities is there-
fore associated with some existing facility with which it shares a location.

If we define the index sets J A {1, ..., n) and / A{l, .... m} and let the subsets

UC,= CCy= ¢ then the categorization can be restated as follows: i

Partition the set J into the subsets UP, CP, UC,, ..., UCyuc. UC, ., CCy Where
a.n UP =V, e JIA, = X, # X, Vi€l vk € J - {j}}
3.2 (P=|{v, ¢ JIA,, =X # X i, €1 Yk € J-{}}
forae=1, ... NUC

a-1 a1

(3.3) uc, v, € J - Y UGIA, = X, = X, Wi € 1, k €] — {j} - v G

J
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forg=1, ..., NCC

B-1 8-1
(3.4) CCﬂ Ajv, e J - lL_JO CC,IA,-B =X =X.ig€l keJ~- L) - lL_JO CcG
NUC 4 number of unique clusters. ]

NCC A number of coinciding clusters.
Note that

(a) New facility j coincides with existing facility i, for j € CP (from 3.2).

(b) The new facilities in cluster 8 coincide with existing facility igforg=1, ..., NCC
(from 3.4).

In order to use this notation for the derivation of the new algorithm given in the next sec-
tion define a unit vector D in £,, as follows:
DT=(D{, ..., DT}
where
3.5) Di=1ldydypl, j=1,...,n
and'
lIDH, = 1.

4. THE DIRECTIONAL DERIVATIVE

Using the notation given in the last section we can write the directional derivative of the
objective function at X in the direction D in the following useful manner:

Sf{X +AD) — f(X)

dpf(X) = lim

A—0* A
= Y (G D}
jeuP
+ z [GI ’ Dj+ wjij”D/Hﬂ
j€CP
NUC
+ 2 2 IGI'DJ+ Z ijHD/_DkHZ]]
a=1 |s€0C, keOc,
k>
NCC
(4.1) + 3| T [G D+ T villD, - Dl + w,,ﬁno,n”
g=1 | r€cc, k€CC,
k>
- where
vilX, - X)) wi (X, — A)
(4.2a) G, = Ty~ TR i T Ay e Up
’ ,E, X = xldl, ~ & 115 - 4l /
(4.2b) G -3 wh= X ik —A) e cp

+
k) HX_,_XI(H) ,’el ”X_,_A,H2

!
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(4.2¢) G = = X)X = 4) v € UC,
. ’ keUC, Hx, — xll, & “X,—A,H2 a=1, ..., NUC
(4.2d) G =Y Xy = X) s wilX) = A) v, € CCy
. ’ K€CCy 11X, = Xl :f,“)(,—-A,II2 gB=1 ..., NCC
‘B

It should be noted that in each case, the expression for G, is the gradient of that part of
the objective function f(X), which is differentiable with respect to X,. In the ca:e where
J € UP, the expression is the exact gradient with respect to X,: in all other cases, the expres
sion for G; can be considered a pseudo-gradient of f(X) with respect to X

Since f(X) is a convex function, the point X* in £,, is a minimum for this tunction i
and only if the directional derivative dpf(X*) is nonnegative for all unit vectors D in £;,. Thas
fact will be used in the next section.

5. NECESSARY CONDITIONS FOR OPTIMALITY

‘ THEOREM 1: If the following conditions are not satisfied at the point A'in £, then the
directional derivative given by expression (4.1) will be negative for some un.. vecio. Dan b,

(5.1 (h 1lGjil,=0 v, € UP
(5.2) @) HGll,<w, v, €CP
(5.3) (3) fora=1, ..., NUC
Hz GJH2 < 2 2 vjk VS C U(‘u
j€S j€s kelUC, - s]
(5.4) @) forg=1, ..., NCC
T G, < l > wl+w,| vToco,
JET JET ke[(‘Cﬂ—Tl

PROOF: The proofs for conditions 1 and 2 are obvious.

D;=R forjes
For3)seti p =0 forjes

thendp fX)=Y G-R+Y X vullRll,

Jj€S J€S kelUC, - 5]
=IRILNT Gllheos0+F T vul.
Jj€S J€S kelUC,~S]

Therefore, dpf(X) 2 0 V¥Donly if

N Gl,<Y ¥ v VSCUCG,.
j€S JE€S kelUC,-S]

The proof for condition 4 is similar.
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6. UPDATE FORMULAS

As a result of the prececding optimality conditions the foilowing update formulas are con-
structed:

CASE |1 If 3j € UP such that G,I| # 0 then the direction of steepest-uscent in the
subspace defined by X, is G, = G,. We therefore use the following update formula for X

PO T VOIS

! XI '—X/ ~ A, G}
where
-1
Vik Wii
6.1) A, = £ + s
| T A P E TR - Al

CASE 2. If 3j € CPsuch that ||G/1]; > w;i then the direction of steepest-ascent in the
subspace defined by JX; is G G;. We therefore use the following update formula for X,

X, —X -G
where
-1
Vik L
(6.2) A= —r— + !
=|E T &L T E TR - Al
CASE 3: If3§8 Cc UC,,a =1, ... . NUC, such that
”2 G.I”2>Z 2 V/k
JE€S j€S keluc, - Sl

then the direction of steepest-ascent in the subspace defined by the subset cluster is
= Y. G,. We therefore use the following update formula:

JES
VIES XJ'—XJ'"MGS |
where
~
v w :
6.3) A= =oAL L :
/;5‘ ware, X X Z X - 4.l |
!
CASE 4 If ITC(Cu.8 =1, . . NCC. such that
ll}: Gll,> Y il + Wi,
JET|fhelCCy-T!

then the dircction of steepest-ascent in the subspace defined by the subset cluster is fi, -~
3 G . We therefore use the following update formula:

v o XX -\ Gy
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where
-1
ij w

B, TR T TR AT

8

In each result, the expression for lambda (A) can be considered a weighted harmonic
mean [8] of the interfacility distance terms appearing in the equation for the gradient {Case 1)
or pseudo-gradients (Cases 2 through 4).

7. A NEW ALGORITHM

Using the results derived in the preceeding section the following algorithm can be used 10
solve Problem P2:

(1) Find a current solution X in E,,,.

(2) Try to obtain a better solution by moving single new facilitics by using Cases | and 2

(3) Fora=1, ..., NUC try to obtain a better solutton by applving the special form of
Case 3 where |S| =1 (10 move single new facilities) or. if this fails, applying the
special form of Case 3 where |S| = |UC,| (to move entire clusters of new facilities).
If successful, return to Step 2.

(4) Forg=1, ..., NCC try to obtain a better solution by applving the special form of
Case 4 where |T| =1 (to move single new facilities) or. if this fails. applying the
special form of Case 4 where ! T| = |CC,! (1o move entire clusters of new facilities)

If successful, return to Step 2.

(5) Try to obtain a better solution by moving subset clusters using Cases 3 and 4. 1f an
improvement is made, return to Step 2.

3. REMARKS ON IMPLEMENTATION

The following rules were used in implementing the algorithm described in the last section

{a) New facility j and new facility K were considered "clustered” if"

i8..a) Hxlhb+1lxll,<e 1<j<k<n
or
2+ |lx, — X!,
(8.1b) i < e 1<j<k<n
HX 2 + 11X, ' h h

where €, A inpuited cluster tolerance,

(b) New facility j and existing facility / were considered "coinciding” if:

(8.2a) HX i+ HAall,<e, =1 ....n i=1...m
or

2« lXx - A4,
(8.2b) ! E j=1. . =1 . m

—— D <
X1+ A, = ¢
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where €; A inputted cluster tolerance,

{¢) The update formulas were used only if:
(8.3) AMIGH, > ¢

where €, A inputted step tolerance. This helped avoid the possibility of repeatedly taking small
steps. However, the step tolerance is reduced prior to the termination of the algorithm as out-
iined by the next rule.

(d) In order to ensure optimality, the following check is made prior to executing Step S of the
algorithm:
(8.4) X)) — £(X%)] « 100 < €3 * f(XH1)

where €3 A inputted function tolerance.

If this condition is not satisfied, the step tolerance (e,) is reduced and the algorithm res-
tarted at Step 2.

9. DISCUSSION
The new algorithm has the following properties;

(a) It makes full use of the structure of the facility location problem thus avoiding the
need for any background in related nonlinear programming areas.

(b) The actual objective function, and nol an approximation to it, is minimized at cach
step in the algorithm.

(¢c) The stepsize used in this algorithm may not be "optimal" when compared with step-
sizes obtained from line-search techniques. However, the use of this stepsize has the
following advantages: a) ease of computation, b) maintenance of location problem
structure, and ¢J reduced computation time per update.

(d) Although Step § in the algorithm is combinatorial in complexity. very little computa-
tional work i1s necessary. This is a result of the fact that ail the information necded
for this step has alrcady been computed and stored in previous steps.

{e) The algorithm is similar to the technique devised by Kuhn for solving the single-
facility location problems with Fuclidean distances [7] and the method devised by
Juel and Love (6] for the multifacility location problem with rectilinear distances
This makes the algorithm attractive to those with experience with these methods.

({3 Currently, there is no rigorous proof that this algorithm converges. In 1973, Kuhn
(7] completed the proof of convergence for a similar scheme. introduced by
Weiszfeid (13] in 1937, for the case of single new facilities. Based on computational
experience and on the fact that the algorithm is designed to minimize the objective
function in all new facility subspaces, it is likely that the algorithm always converges.

{g) The main disadvantage of the algorithm is that the order in which each of the sub-
spaces is checked is, currently, not optimal. A method. based on projections. that
would allow us to determine "a priori" which subspace 1o update. is now being inves-
tigated.
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thy  Most exisung methods for solving the multifaahity problem Lick anv consideration o
the eaistence of constraints on the solutton space {97 This is wise roe of the new
method outhned in this paper. however. the addition ot constiimnt~ should not
present a probiem to the projechion techmque

(iy 1t has vet to be proven that the necessary conditions for opumahty te: Probiem P2
given by Equations (5.1} through (3.3) . are abso sufficient

10. COMPUTATIONAL EXPERIENCE

The pertormance of the algorithm described in this paper (MELPV T was tosted agaimnsi
the hyperboloid approxtmation procedure (HAP) described in Evster. White and Wierwiile (21
and a moditied hyperboloid approximation procedure (ME1AP) suggested by Osgresh it

Two parameters were used as a basts of comparison: 1) the number of new faciliny ioca:
tion updates needed to reach optimality, and 2V the required CPU time in minutes  In the case
of program MFLPV1, two counts were considered necessary for specitving the first parameto:
The first count represented the number of "attempted” updates {excluding those updates trom
Step S of the algorithm). The second count represented the number of "successtul” updates
I'he reason for excluding the number of attempted updates from Step S of the algorithm s sin-
ply this: computationally, very little work is done at this step in the procedure

Six problems were used for the comparison; the first three were taken from [S] (#5223
#5.7 and #5.6 respectively). the fourth appears in (2] and the last two problems summarized 1
Tables | and 2, are the authors.

HAP and MHAP were both executed using two different initial hyperbolic constants €
for these problems in order to emphasize the significance of this parameter to the performance
of these algonthms. The stopping criteria used in each case was the same as that outhned in

the paper introducing HAP [2]. Unless otherwise specified, program MELPV aiso made use of

the following data.
(1) € A cluster tolerance = 0.01 (from Equations (8.1) and (8.2)).

(2) €, A step tolerance = 0.05 (from Equation (8.3))

(3) €3 A function tolerance = 0.01 (from Equation (8.4)).

The results of these tests are summarized in Table 3. The numbers in this table represent
the total new facility updates required to reach optimality. The numbers in brackets (), under
the column headed MFLPVI, represent the number of successful updates whereas the unbrack-
eted numbers in these columns represent the number of attempted updates. The following
observations and comments can be made about the results summarized in this table.

(a) In all but Problem 5. the number of attempted updates required to reach optimahity
using MFLPVI is less than the number of updates required by HAP and MHAP
These numbers are directly comparable.

(b) The new procedure (MFLPVI1) used considerably less CPU time in solving the six
problems than did HAP and MHAP.

b1

ke
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TABLE | — Input Paramerers for Problem 5

/ a, a,:
1] 00 0.0
2120 40
3160 2.0
4160 100
5180 8.0
i (a) EF Locations
‘ NI 2 3 405
/
1 1.0 101010 1.0
211010101.01.0
3110101010 1.0
411010101010
Si1.01.01010 1.0
6 (1010101010
711010101010
8§ |1010101010
911010101010

(c) w, Weights

7.

j x/(l(" X/‘]“’
110 0.0
21000 00
360 100
SO I OB
s 60 100
6| 80 80
7 } 20 40
81 20 40
9 ) 60 100

(b) Initial NF Locations

Neolie JEEN The SRV I S T

(d) v, Weights

TABLE 2 — Input Parameters for Problem 6

! a) a2
) 20 5.0
2 1100 200
3100 100

(4) EF Locations

R 2 3
]

1 ] 016 056 016
2 1016 056 016

(c) w, Weights

) gm

RIS
ﬁ S0 15.0
2150 150

(b) Initial NF Locations

(d) v, Weights
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TABLE 3 — Comparative Test Results for Six Problems

e =100 eV =104
# MFLPVI X X"
HAP | MHAP | HAP | MHAP
(1.0.0.0)
(1.0.0.0)
1 564 (77) | 1661 | 1381 | 2027 1407 (1.0.0.0) 38.990
(2.0.0.0)
(2.0.0.0)
) 48 (34 4 (10.0.20.0)
148 34) | 647 | 546 641 2281 100500 | 186.798
(8.0.7.0)
3 3 ‘
63 (16) | 87 70 770 197 oo 43.351
4 31(15) | 45 45 45 45 (2.832,2.692 | (7750

(5.096.6.351)

(4.045,4.281)
(4.045,4.281)
(4.045.4.281)
(4.045,4.281)
5 223 (40) 142 114 1763 975 (4.045.4.281) | 201.878
(4.045,4.281)
(4.045,4.281)
(4.045,4.281)
(4.045,4.281)

(10.0,20.0)
6 63 (7) 242 164 3743 1869 (10.0.20.0) 8.540

TOTAL | 1092 (189) | 2824 2320 12989 6774
CPU 0.07 0.45 0.50 1.88 1.48

(¢) Five of the six problems have solutions at cluster points. This appears to be the case
in many other problems. This suggests that methods using clustering information,
such as MFLPV1, will perform better than methods that disregard this information.

10. CONCLUDING REMARKS

To date, many of the methods designed for solving the multifacility location problem have
been either poorly structured, suboptimal or haphazard. In this paper, a new method is
developed for solving the multifacility location problem involving Euclidean distances. This
new method can easily be extended to accommodate problems involving item movements that
are other than Euclidean. Computational experience shows that this method outperforms tech-
niques currently in use. In addition, the proposed method takes full advantage of the structure
of the location problem.

Most current techniques used for solving location problems, including those proposed in
this paper, are designed to minimize an unconstrained objective function. This is an incom:
plete treatment since most practical problems involve some form of spatial constraints It s
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proposed that these constraints be handled and the performance of the algorithm improved
through the use of projection techniques. This approach is currently being investigated by the
authors.
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ABSTRACT

The fixed charge problem is a mixed integer mathematical programming
problem which has proved difficull 10 solve in the past. In this paper we look
at a special case of that problem and show that this case can be solved by for-
mulating it as a set-covering problem. We then use a branch-and-bound in-
teger programming code 1o solve test tixed charge problems using the set-
covering formulation. Even without a special purpose set-covering algorithm,
the results from this solution procedure are dramatically better than those ob-
tained using other solution procedures.

1. INTRODUCTION

The linear fixed charge problem may be formulated as:

(1) Min Yox, + 3 Ly,

e J 1eJ

(2) Subject to Y a,x, 2 b i€
)

Fifx, > 0

: ¥ =10 otherwise / € 7/

(4) and x, 2 0, y € J
| ford=1{t. ... mband J ={1. ..., nl

In addition to continuous costs, the variables have fixed costs which are incurred when
the corresponding continuous variable becomes positive Al cost are assumed to be nonnega-
tive  Problem (F) is very similar to the standard linear programming problem. differing onlv in
the presence of the fixed costs. In spite of this similarity, it has proven to be an extremely
diflicuit problem to solve.

If all the continuous costs are zero, we have a special case of the fixed charge problem

which we will refer to as problem (PF). Problems of this type can occur, for example, when-
ever there is 4 need to find solutions with the least number of basic. nondegencrate variables

621
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In a network context, Kuhn and Baumol [4) discuss the need to know the least number of arcs
necessary to carry a desired flow. Also, in the survey processing field, it often becomes neces-
sary to check a record of replies to a questionnaire and to determine changes to make the
record consistent. In this case, it is necessary to know the minimum number of such changes
that are necessary for consistency. Both of these problems are examples of problem (PF) with
the former having the standard transportation constraint matrix and the latter having a general q
constraint matrix which depends upon the consistency conditions.

A special case of problem (PF) occurs when all the constraint coefficients are nonnega-
tive, i.e., a; 2 0 for all i, j. We will refer to this problem as (PF+) since we retain the condi-
tion that all continuous costs are equal to zero. In this paper, we will demonstrate a solution
procedure for (PF+) based on a revised formulation for the problem. We then use a branch-
and-bound integer programming code to solve the revised formulation. The results from this
approach will be compared to those obtained using other procedures.

2. A REVISED FORMULATION

The problem in which we are interested may be formulated as follows:

(5)  Min AT

j€d
(PF+)
subject to  (2) — (4)
(6) where a; 20fori€l jeJ

(PF+) remains a special case of the fixed charge problem (F) so any results that are applicabie
to problem (F) will also be applicable to (PF+).

Two previously derived results for (F) that are of particular interest to (PF+) are:
1) any optimal solution to (PF+) will occur at a vertex of the continuous constraint
set (2) and (4) (Hirsh and Dantzig [3]);

2) a lower bound, L;, on the sum of the fixed costs can be found by solving the
set-covering problem, P, below (McKeown [5]).

Min Lo=3 f,
i€
(Py)
(7 Subjectto Y8,y 21, i€l
Iy,
(8) y €©1), j€T
lifa, > 0

¢} where 3

U™ | 0 otherwise,
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We will combine these two results to develop a solution procedure. the essence of which s
summarized in Theorem | below.

THEOREM |: Let B = |/ l_r, = | in an oplimal solution to F.}. then there exists a leisi-
ble solution to (PF+) such that x, > 0 for j € B} Furthermore. this solution will be optimal
for (PF+).

PROOF: Given an optimal solution to P;, we must show that there exists i correspond-
ing solution to (PF+). The first thing to note is that each column of the constraint matrin (7}
of Py in BY has at least one nonzero element that is the only nonzero element in thal row
Otherwise, the set would be over-covered and we could reduce the objective value of P,
removing that column from the optimal solution. We may use this result together with the
nonnegativity of the ¢, clements to construct a sotution to (PF+) using B;.

Assume, without loss of generality, that IBfl = & and that the decision variables have !
been reindexed such that {1, ..., A} € BZ ic., the first A variables of (PEF 41 correspond (o
the optimal basic variables of P,. We cun now construct a feastble solution to (P +1 using the
following two rules:

1) Xy = Max {b/a,,)
a, # 0

i€l

'
Max {h - T
P
and 2) o= Max |0, g, =0 - |, A =]
a,
i €1 *

This proves the existence of a solution 16 (PF+) corresponding 1o B2 The opuimality of
this solution is guaranteed by the fact that both (£,) and (PF+) have the same objective value
and that this objective value for P, is a lower bound on (PE+). Henee, B corresponds 1o an
optimal solution to P,

3. COMPUTATIONAL COMPARISONS

Since the optimal set of variables for (PE+) can be found by solving the set-covenny
problem, P,. we should be able to usc this result 1o reach quicker solutions 1o (P +1 W
used a4 mixed integer programming code based on the approach of Tomlin [7) a8 extended by
Armstrong and Sinha [1] 10 solve the set-covering problems. Special-purpose set-conering algo-
rithms can be cxpected to perform cven better. Fived charge test problems Tirst generated by
Cooper and Drebes (2] were used as a basis of comparison between this set-covenng approach
and two other procedures. The first such procedure 15 a branch-and-hound code developed
McKecown [6} specifically for fixed charge probiems while the sceond pracedure used the same
mixed integer code as before, but solved (PEF4) as a mixed integer problem

The original test problems were of dimension 8 ¢ 10, but Lareer problemis were generated
by putting these smaller problemis on the diagonal  Using these problems. the resulis of ow
comparisons are shown in Table 1 below.
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TABLE |
) Average Solution Time per Problem in
CPU Seconds on CDC 70/74
Problem Size Num‘hcr Armstrong . Set. . LP
Set (mx n) ot and McKeown | Covering | Solutions
) Problems Sinha
1 S x 10 12 0.132 0.049 0.017 10
2 10 x 20 6 0.856 0.345 0.046 4
3 1S x 30 4 3.039 1.357 0.101 2

From the table we can see that the set covering formulation is almost three times faster
than the best alternative approach for the small (5 x 10) problems and up to 13 times faster for
the larger problems (15 x 30). We have also noted the number of problems for which the
lincar programming solution was integer feasible for the set covering problems. This occurred
in over half of the cases.

4. CONCLUSIONS

In this paper. we have shown that a fixed charge problem with nonnegative constraint
matrix coeflicients and all continuous costs equal to zero can be solved by solving a related set-
covering problem.  Computational experience confirms that this procedure vields dramatically
better solution times than any other available solution procedure. Even quicker solution times
can be expected to result if special purpose set-covering codes are used.
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ABSTRACT

The bounded interval generalized assignment model s & "many -for-one’” as-
signment model. Each task must be assigned 10 exactly one agent. however,
cach agent can be assigned multiple tasks as long s the agent resource cone
sumed by performing the assigned tasks falls within o speciticd inteeval - The
bounded interval generalized assignment model is formulated. and an algo-
rithm for its solution is developed.  Algortthms for the bounded interval -
sions of the semiassignment model and sources-to-uses ransportaion model
are also discussed.

1. INTRODUCTION

In general terms, assignment models represent problems in which indivisible tasks are 10
be paired with agents. Given a measure of utility (or disutilily) associated with cach possible
pairing, the objective of the model is to optimize the collective utility associated with assigning
a set of tasks to a set of agents. In practical applications, the number of tasks typically exceeds
the number of agents, and at least one agent must be assigned two or more tasks if all tasks are
to be complieted. Examples of such "many-tasks-for-one-agent” problems include the assign-
ment of engagements to a firm’s personnel (201, points of distribution to facilities [15], geo-
graphic units to district centers [21], products to plants [1}. inventory items to warchouses (8],
harvestable forest compartments to a labor force [121. ships to shipyvards [11], scholarships to
students [18], storage compartments to commodities [19]. jobs to computers (3], iles 10 mass
storage devices [2,13], defect checkpoints to inspectors [17]. and trips to ships {71 The feas-
bility of many-for-one assignments will depend on the agents™ abilities to complete the collec-
tions of tasks assigned to them. That is, the subsets of tasks that can be assigned to cach agent
are determined by the total amount of effort available to the agent and the amount of effort
that each irdividual task requires.
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Several many-for-one assignment models have been developed which take into account
only upper limits on the total amount of effort that each agent may expand. Each of these
models is a special case of a model developed by Balachandran [3] and Ross and Soland [14]
called the generalized assignment model. This model has the form:

(1) (P) minimize ==Y Y ¢,x,

6l ey
(2) subject to Y x, =1 for all j € J.
i€l
(3) > N, < b forall i € I,
15
4) x,=0o0r1 foralli€ [, j€J
where 1 =1{1,2, ..., m} is an agent index set, J={1,2, .... n} is a task index set. ¢

represents the disutility associated with an agent 7, task j assignment, r, > 0 denotes the
resource burden incurred by agent 7 in completing task j. and b, is the resource available to
agent i. The decision variable v, is interpreted as

1 if agent i performs task j
Y = | 0 otherwise

Constraints (2) and (4) insure that each task is uniquely assigned to a single agent. and con-
straints (3) insure that each agent expends no more than b, resource units in accomplishing
assigned tasks. Differences in the difficulty of tasks and differences in agents’ abilitics 1o per-
form the tasks are reflected in the values of the parameter r,,.

The special cases of (P) place various restrictions on the form of the agent resource con-
straint (3). Francis and White [9] and Barr. Glover and Klingman [5] have addressed the prob-
lem in which constraints (3) have the form:

(3a) Y x, < b foralli€l
/

Here b, denotes the number of jobs agent i can complete, for all jobs consume only one unit of
an agent’s resource when the agent performs the task {ie, r, =1 foralli € I.j € J). The
model (1.2.3a.4) is a generalization of the standard assignment problem of lincar prograinming
in that it permits an agent to undertake more than one task. It has been called the gencralized
assignment problem by Francis and White and the semi-assignment problem by Barr. Glover.
and Klingman.

Caswell {6], DeMuio and Roveda 8], and Srinivasan and Thompson [16] studied the
problem in which (3} is replaced by: .
(3b) Y rx, < b foralli€l

1¢J

The model (1,2.3b.4) explicitly considers differences in the difficulty of tasks incorporated in
the parameter r,. Srinivasan and Thompson called this model the sources-to-uses problem to
reflect the interpretation of the model as a transportation problem in which the demand at the
J-th location, r,. is to be supplied by a single source.

Practical considerations frequently require that the agents e¢xpend a minimum total
amount of effort in completing assigned tasks. Placing both minimum and maximum restric-
tions on the resources each agent can expend, vield assignments which neither overburden nor
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underutilize the agents. Such restrictions arise in most personnel planning applications {20].
Managerial policies usually require an equitable distribution of work across agents. Analagous
restrictions crop up in other contexts as well. For example, in machine loading models, it usu-
ally is desirable to balance machine workloads rather than allowing some heavily louded and
some lightly loaded machines. In facility location models, capacity constraints may restrict both
the minimum and maximum size of a facility to avoid diseconomies of scale associated with
plant sizes outside of a reasonable range, 10 permit piecewise linear approximation of concave
cost functions. or to restrict both the minimum and maximum number of facilities [15}. Simi-
larly, territory design procedures for problems of political districting, school districting. and
sales districting require an equitable distribution of some entity (such as voters, minority stu-
dents, or sales potential) among the districts. Finally, in some applications, upper limits on the
effort an agent can expend may be irrelevant, and only lower limits need be considered. Such a
situation arises in the segregated storage problem [19] which requires only that a minimal
amount of storage space be allocated to store commodities and no maximum allocation is
specified.

Thus, from the standpoint of modeling flexibility, it is desirable that assignment models
consider explicitly upper and/or lower bounds on the efforts agents must expend in completing
assigned tasks. While most "many-for-one" assignment models consider upper bounds. lower
bounds have largely been overlooked. In this paper, we introduce the bounded interval gen-
eralized assignment model and discuss how existing algorithms can be modified to accommo-
date lower bounds on agent workloads for this model and its special cases.

2. THE BOUNDED INTERVAL GENERALIZED ASSIGNMENT MODEL AND
ALGORITHMIC CONSIDERATIONS

The bounded interval generalized assignment model may be formulated as follows:

(5) (P*) minimize ==Y Y c¢,x,

i€l jed
(6) subject to 3 x, =1 for all j € J.
i€l
(7N a <Y rx, <b forall i € /.
1eJ
(8) x,=0orl foralli € 1. je& J.

Notice that (P*) derives from (P). Fortunately, the modeling flexibility achicved through
the introduction of lower bounds a; > 0 in constraints (3), (3a), or (3b) does not complicate
significantly the computational effort required to solve any of the models described above.
Rather, as we shall show, straightforward modifications can be made 10 the existing algorithms
for the semi-assignment problem, sources-to-uses transportation problem. and the generalized
assignment problem. The interested reader should consult the cited references for the details
of the original algorithms.

In the case of the semi-assignment problem, the constraint matrix is totally unimodular,
and integer solutions can be obtained using the simplex method. To impose the lower limit,

(Ta) Y x,=a forallic€l
7
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one need only add an upper bounded slack variable s; £ b, — a; to each of the constraints (3a)
and rewrite them as equality constraints. Optimal solutions to the resultant bounded variable
linear program will be integer valued.

Models with constraints (3) or (3b) are not totally unimodular. Hence, the solutions of
the linear programming relaxation (i.e., x; = 0 for all i) need not be integer. Branch and
bound approaches have been developed for deriving integer optimal solutions which solve
linear programming relaxations for fathoming and to compute lower bounds. In the case of
(3b), a linear programming relaxation is the standard transportation problem [16]; and in the
case of (3), a linear programming relaxation is the generalized transportation problem [3]. As
in the case of the semi-assignment problem, to impose constraints (7) or

(7b) a; <Y rx; < b foralli €/

j€J
in a linear programming relaxation, one need only add upper bounded slack variables
s; < b, — a; to constraints (3) or (3b) and rewrite them as equality constraints.

h; The algorithm developed by Ross and Soland [14] for the generalized assignment problem
does not solve a linear programming relaxation to determine the lower bounds. Instead, a
Lagrangian relaxation is solved in the form of a series of separable binary knapsack problems.
The Lagrangian relaxation has the form:

(8) (P,) minimize Z, =Y Y c;x;+ 2 A (1=Y x;)
~ i€ i€l

i€l jeJ

subject to 2 rx; b foralli€]
j€s

x; =0orlforalli €l j€J

The value of each A; is set equal to cy;, the second smallest value of ¢, for all i € /. These A,
are optimal dual multipliers for the problem:

e e

(P) minimize Y ¥ ¢;X;
i€l jeJ

subjectto Y x; =1 forall j € J,
i€l

0<x;, €1 foralli€l jeJ

Thus, determining a lower bound requires two steps. First, solve (P, ), then solve (P,). If the
primal solution X = (x;) to (P.) should also satisfy (8), then Z = Z;, = Z,, and (P,) need
not be solved. Frequently, X will not satisfy (8), and (P,) must be solved to find Z,.

To incorporate the lower bounds a, into the algorithm, one need only replace constraints
(8) by constraints (7) giving rise to the problem (P}) with knapsack constraints bounded both
from below and from above. Seemingly, this minor modification to the form of (P,) should
have little effect on the algorithm. However, it must be noted that (P,) will involve fewer 0-1
variables and may be easier to solve than (P?). The reason is best explained by considering an :
equivalent form of the objective function of (P,): "
Z, = ¥ A, — maximum Iz Y0 - c,,)x,-,l.

j€J i€l j€J
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Clearly, with constramnts (8) one can set any A, equal to zero which has an objective function
coeflicient (A, — ¢,,) £ 0. Thus, using the values of A, calculated from solving (P)), r,)
reduces to a problem involving at most # 0 — 1 variables. Such a reduction is not possible for
(P

In addition to providing a lower bound, the solutions to (P;) and (P}) may be used 1o
select a branching (or separation) variable for defining subsequent candidate problems. As
noted above, the solution to (P;), X, is usually not feasible to (7). In essence. the solution to
(P, X = (X,), may be interpreted as recommending changes in X which must be made in
order to satisfy (7). That is, it is possible that for some j € J, 2.?,, = 0 to avoid overloading

el
any agent or 2 X, > | to insure every agent uses a minimum amount of his resource. Those
el
variables X, with an optimal value of one indicate agent-task pairings that should be made:
whereas, those X, with an optimal value of zero indicate pairings that should be avoided. Thus.
these variable values indicate changes that will reduce the aggregate infeasibility of Yin (D,
and they are helpful in choosing a hranching variable.

To formalize the concept of reducing aggregate infeasibility, we detine the infeasibility in
constraint i prior (o taking a branch to be

D= max {0. d'. d }

where o' =Y n,X, —b,
)

d, =a, — 2 r,X,.
e d
The set I' = (i € Ild,' > 0} identifies those constraints (7) for which X_exceeds the upper
bound. and I = {i € I|d, > 0} identifies those constraints (7) for which X fails to satisfy the
lower bound.

Suppose ' 2 ¢ and k€lj € JIx, =1 and i € I'}; if 1, is set to 0 then &' and 4,
become:

) =
(II z ryXy, — b: TS
e J

‘ll =q - z TR + oy

e d
and the resulting infeasibility in constraint / becomes
D} = max {0, d’. d .
Assuming that task & is reassigned 10 the sccond least costly agent. (say agent /i, where

G = min ¢, ) then the infeasibility in constraint 4 becomes
[

D= max 10, d,. d, |

I

where

d) = Z L T
e d

(Il, = a, — z Figy Ny =™ I

)
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Hence, the net difference in total infeasibility is:
ADf= (D, + D,) - (D} + D))

If AD* > 0 then setting x; = 0 yields a reduction in aggregate infeasibility, and if AD* < 0
then such a branch will not reduce aggregate infeasibility.

Similarly, suppose that /- # @ and k € {j € JIx, =0 and i € I"}; if x, were set to |
then d;* and 4" become:

+ __ T
d* = 2 ryXy; = b+ ry

jeJ

d- =a, — z Ty Xy — T

1€J
and the resulting infeasibility in constraint /i would be
D¥ = max {0, 7, d"}.

If x, is set to 1 then task k is assigned to agent / and agent j; relinquishes it, where
i = min ¢,. Hence, the infeasibility for constraint i, becomes
1

k . —
D} = max {0, 4}, d, |

where
N _
d' = Zr:klx /E_b:,\_rlklx

% s
1€J

d-
A

aIA - 2 ,lAI Xl,‘/ + r:AA'
et

The net difference in infeasibility is
ADM= (D, + Du) — (D} + D,‘;)

where D, and D,A are the infeasibilities in constraints / and J;, prior to any branch. As before. if
AD! > 0 then there is reduced infeasibility following a branch on variable x,.

Several rules for selecting the branching variable, x,.,«, are formulated as follows:
I. a) x.. is that variable for which

ADVN = max  {AD])
Gope HUUH

where  H' = (G, )X, =0andi € I'}
H = {6 )Ix, =Vandi € [}
b) If ADA = 0in a) then x,. . is that variable for which

ADE = max {AD/)

o gt HOY L G

where G ={G )y, =1landi € I')

G = {6 I3,

Oand i € | }.
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I1. @) X« is that variable for which

min . min L
o A_I_(l,/ Gy Ciy
pjej» = min ——1,

./ / J
(i, j)€G* AD; (i, jYEG AD;

b) If AD/ = 0 forall (i, j} € G* UG then x4, is that variable for which

max )\f-_('l./
Per = (i, j)eE
i r,/ (b, r,)

where  E* = {6 )5, = landi € ['},
F, denotes the set of tasks assigned to agent i by prior branching.

Rules la and Ib are designed to choose that variable which reduces the post branch aggregate
infcasibility by the greatest amount. Rule Ila conditions the choice of branching variable on the
additional cost incurred per unit reduction in infeasibility. Rule [1b is the one used in {14]: the
variable chosen by this rule represents an agent-task pairing which should be made considering
the penalty for not doing so weighted by the fraction of the agent’s remaining free resources
consumed by the assignment.

As the algorithm progresses and new candidate problems (CPs) are defined by the branch-
ing process, the additional steps given below may be taken to facilitate fathoming. These steps
are specialized adaptations of more general forcing (or variable fixing) tests suggested by Balas
{4] and Glover [10].

In solving any (CP), any x. for which r.,» > b — z X e, may be set equal to zero.
v F

Here £ denotes those j € J for which x-, has been assigned a value of zero or one by prior

branching or variable fixing tests. Similarly. if there is an .. for which a.-— z

b

Xy he, > 2 ry, = ry. then x. must be set equal to one in the solution to (CP). These

T

variable forcing tests may subsequently result in other variables being forced to sero or to one

when all of the resultant implications are constdered. Morcover, forcing certain variables to

zero or to one in the solution to (CP) may affect the values of some of the A, obtained from

solving (P7). This change may, in turn, increase the value of the fower bound provided by
(P

Another test may be used to check the feasibility of (P*) (or any candidate subproblem)
Summing the constraints (7} together vields the constraint {9):

9 4=Ya <Y Yrx,<XYh=8
el el

e
This new constraint, together with constraints (6), implies that for any feasible solution 1o (P*)
we must have:

(10 Yrn>d4and} r/< 8B
o d vt

s

[V
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where

r; = max{r,} and r ' = minir,}.
el el

The values necessary for the tests (10) can be updated easily as part of the branching process in
order to apply this test to each (CP),

The algorithm terminates in the usual way when all candidate problems have been
fathomed.

3. CONCLUSION

This note has described an efficient branch and bound algorithm for the bounded interval
generalized assignment problem.  The algorithm serves as a useful tool for solving a large
number of applications of this assignment model, a representative sample of which is men-
tioned in the introduction.
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ABSTRACT

In this paper we are concerned with several random processes that aceur in
M/G/1 queues with instantanesus feedback in which the feedback decision pro-
cess is a Bernoulli process. Queue length processes embedded a1 vanious times
are studied. It is shown that these do not all have the sume asymptotic disin-
bution, and that in general none of the outpul. input, or feedback processes is
renewal. These results have implications in the application of certamn decompo-
sition resufts to queueing networks

1. INTRODUCTION

In this paper we are concerned with several random processes that occur within the class
of M/G/I queues with instantaneous feedback in which the feedback decision process is a Ber-
noulli process. Such systems in the case G = M are among the simrlest, nontrivial examples
of Jackson networks {8]. Indeed, they are so simple that they are usually dismissed from con-
sideration in queueing network theory as being obvious. We will show that far from being
obvious, they exhibit some important unexpected properties whose implications raise some
interesting questions about Jackson networks and their application.

In particular, Jackson {8] observed that in his networks the vector-vafued queue length
process behaved as if the component processes were independent, M/M// systems. Since those
results appeared there has developed a mythology to explain them. These arguments usually
rest on three sets of results that are well known in random point process theory: superposition,
thinning, and stretching. By examining the network flow, it will be shown that the applications
of these results are inappropriate for queueing networks with instantancous, Bernoulfi feedback
These flows are considerably more complicated than one expects based on such arguments.

*The research was supported under ONR Contracts NOOOTA78-C-0492 (NROS2-296) and NOOTE 77 € 0730 INRODY 29
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It is shown that in general, both the input and output processes of the M/M/! queue with
feedback are Markov-renewal, and the kerncls of those Markov-renewal processes are given.
The output of the M/G/! queue with feedback is also Markov-renewal, and that kernel is given.
It is shown that in general these processes are never renewal. The implications of these facts
are discussed in Section 4.

1.1 The Problem and Notation

We assumie the usual apparatus of an M/G/I gueue with unlimited waiting capacity. The
new idea s that a unit which has received service departs with probability ¢ and returns for
more service with probability p p + ¢ = 1. Without loss of generality for the processes stu-
died here. the returning customer cun be put anywhere in the queue.

To establish notation it 1s assumed that the arrival process is a Poisson process with param-
eter A > 0. The arrival cpochs are the elements of {W,: n = 1.2, ...}. Service times are
independent, identically distributed, nonnegative, random variables, S, with

Prols. <=M, 1 =20,
F1S,1 < oo,
We detine H*(s) | the Laplace-Stieltjes transtorm of £(1) . by
= [ vat, Res 2 0.

The arrival process and service times are independent processes.

Service completions occur at Ty < Ty < T, ... called the owiput epochs. 1et

] ) 0, if the n-th output departs,
v, = )’u T 11, if the n-th output feeds back.

1Y} is a Bernoulli process.

Elements of the subset {r,] C {7} are called the departure epochs and are the times at
which an output leaves the systemt. The elements of the subset {+,} € {7,} are called the feed-
back epochs and are the times at which an output returns to the queue. {1,} U {7, = {T,!.

The times 7)) are the times at which a unit enters the queue. (7)) is called the inpur pro-
coss. (T =110 {7,

There are five queue length processes to be studied. They are closely related as will be
shown.  Let Q) be the queue length (number in the system) at . Then.
Qi ) =QUW, — . Qs ()= QT = M Q7 ) = QUT, + 0. Q4 tn) =, +0) are
respectively the embedded queue lengths at arrival epochs. input epochs, output cpochs. depar-
ture epoghs.

2. QUEUE LENGTH PROCESSES

The qucue lengths listed in Section 1.1 are closely related. The steady state versions of
{Qy ()} and Qg (m)) are of primary concern. They are studied in Sections 2.1 and 2.2
separatcly. They are related to the other processes in Section 2.3. The important special case
for G = M is then studied in 2 4.
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2.1 The {Qf (n)} Process

There are several ways to study this process. The following appears 1o be direct. correet,
and may help explain why these feedback problems have received such litle attention in the
queueing literature. First, it is clear that

LW+ S, ifQf (n—=1 >0,
= P
! 1 + ln + Sn- if Q.: {r— 1= 0.
Here S, is the total service time consumed between the (n — 1) — s7 and n-th departure. 1/, is
the idle time following 1, when QJ (n — 1) = 0. For the M/G/! queue, the /s are indepen-

dent, identically distributed, random variables that are exponentially distributed with parameter
A.

Without loss of generality, since customers are indistinguishable,
S,’,= S] + Sg+ Sm.

where m is the number of services performed between the (n — 1) ~ sr and n-th departure.
Since {V,} is a Bernoulli process, m is geometrically distributed and it follows that {S;} is a
sequence of independent, identically distributed, random variables. Thus. the Laplace-Stieltjes
transform of the distribution function of S, is easily found to be

G Us) = gH* ()11 = pH*(5)].

Using standard embedded Markov chain methods (3. 167-174] one tinds that the probabil-
ity generating function of H the limiting probability distribution of [Q; (n) 18 given by

7' (z—-1)G* (A - A2)

W & := G' —AD)
and
(2) m'(0) = 1 — AELS, Vg,
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If one is willing to assume that the M/G/I queue with instantaneous, Bernoulli feedback
has a queue length process which asymptotically has the same distribution as another M/G/J
queue without feedback, then (1) and (2) follow immediately. This assumption is valid since if
customers feedback to the front of the queue, the total service time of the #-th customer s ;.
{S.) is a sequence of independent, identically distributed, random variables with mean ElS,)/q.
Alternatively, one can argue that the M/G/I queue with feedback (as defined here) has the
same asymptotic distribution for its queue length process as an M/G/] queue without feedback
if one takes the arrival process parameter in the latter case to be A/q. Indeed, both of these
assumptions and several others that are used to "prove” that these queues with feedback are
trivial have now been proven by the arguments leading up to (1) and (2). That these argu-
ments can be applied more generally is easily proven. In the remainder of this paper, in Takdcs
(10} and in Disney [6] it is shown that while these arguments may imply that the study of
queue lengths at departure times is trivial, the same cannot be said for other processes of
interest.

2.2 The {QF (n)} Process

This is the queue length process embedded at output points. Since {1,} € {7,). {Qy ()]
is a process on a coarser grid than {Qy (). Since one is ultimately 10 be concerned with both
(Q¢ )} and {T, = T, |}, the following study is for the joint process {Q3 (). 7, - T, ).
The marginal results for { Q7 (n}] then will be casy to determine.

THEOREM 1: The process (Q7 (n), T, — T, |} is a Markov-renewal process with kernel
AGjx)=Pr{Qsmy =4, T,— T, | £ x|Qf(n -1 =i} If one defines

P.yy = e M i=0.1,2. ...,
then
0. ifj<i-—1,
S p P ) dH ), it i = 0,
A = J J=zi-1,
[ Gp PG ) = 0,
> 0.
e Pt Y, i == 0,
PROOV:

S, iFO =D >0,
L= o=l 45, irocm-n=o

where /, is the exponentially distributed idle time preceeding S, if Oy (# — 1) = 0. The result
then follows directly using arguments as in [5]. 1

As x — oo, 4(1,jx) — 4(ij) the one step transition probability for the {Q; (1)} process.
Then using standard embedded Markov chain results 13, 167-174] one can show that the proba-
bility generating function g (z) for the limiting probabilities 7 (j) of ) (n) are given by
(3) ey = 7O = D (pzHTA = Az) + gH* (A = Az))

= pH 0 =AY — gH* (A — AZ)
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and
(4) 7(0) = g — NE[S,].

2.3 Other Queue Length Processes

The queue length and limiting probabilities for the queueing processes, {Q, (n)},
{@; (n)} now follow from a theorem found in Cooper [3, 155). From this if follows that
{0 (), {Qr (n)}, and {Q4 (n)) are asymptotically, identically distributed (see Cooper [3, 651
and Qj (n), and {Qy (n)] are asymptotically, identically distributed. Clearly, {Q/ (n)} and
{QF (n)) are not asymptotically, identically distributed. That {QJ (n)} and {Q; (n)] are not
asymptotically, identically distributed can be seen as follows. First, in the set up of studying the
{Q+ (n)} process one must decide how to count the feedback customer when he appears. The
clean way to do this is to use Y, as defined in Section 1.1 and *Q; (n) as the number in the
queue not including the outputting customer. Then one can study the process {V,, *Q{ (n)).
Indeed, this is precisely the direction used, for example, in d’Avignon and Disney [4]. Then
the {Q5 (n)) of Theorem 1 above would be the {*Q+ (n) + Y,} process of [4]. I then follows
that {*Q; (n)} and (Q; (1) 're asymptotically, identically distributed. Thus, if one does not
count the feedback custome .1 the queue length process, the queue length processes defined in
Section 1.1 are all asymptoticaly, identically distributed.

2.4 The M/M/1 Case

If one assumes that the service time distribution is
H()=1—¢e"* 120,

some further clarification is possible here. From the results of Jackson [8],

w'(j) = [1 _A AL =0
qi qu
From (3) and (4) one obtains
7 (0) = q[l - L]
=1
A

m(j) = [ p+—| =12
n

Comments in Section 2.3 explain this difference between 7 (j) and 7'( ).
3. FLOW PROCESSES

To further clarify the problems here. it is useful to study the flow processes in this sys-
tem. There are five processes of interest: the arrival process, the input process, the output pro-
cess, the departure process. and the feedback process.

There have been some questions since the publication of the Jackson results concerning
the interpretation of his results [2]. In his paper Jackson showed that for his nctworks the joint
limiting probability for the vector of queue lengths at each server could be factored into limit-
ing probabilities for the gueue length at cach server. This imples that the gqueue lengths are
independent in the limit. Furthermore, the marginal limiting probabilities were found to be
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precisely those of an M/ AI/1 queue. Burke {21, has argued that the Jackson results are surpris-
ing. Burke's argument is based on showing that the input 10 a single server queue with feed-
back is not Poisson because the interinput times (our {7, — T, 1) are not exponentially distri- '
buted. [2] gives the precise result

PAT, - T, <) =1 = B2 A o PR w5,
H— A M A

In this section we will study some of the flows in this network and show indeed that the
Jackson results are surprising.

3.1 Departures

The departure process {1,} can be studied as in Disney, Farrell, deMorais {5} upon using
the mapping in Section 2.1. Thus we know that whenever {S,] is a renewal process with
exponential distribution this departure process is a renewal process, and is a Poisson process.
This is the Jackson case. So we conclude that the departure process from the Jackson network
is a Poisson process.

From the results of Section 2.1 it would seem possible that the departure process is Pois-
son even if S, is not exponentially distributed. The result that is needed for the results of [5]
to follow is that S, be exponentially distributed (since it is known that {S.} is a sequence of
mutually independent, identically distributed, random variables).

LEMMA I The departure process from the MAG/I queue with feedback is a renewal pro-
cess if and only if S, is exponentially distributed for every n. In that case the departure process
is Poisson.

PROOL: From Section 2.1 we have G*(s), the Laplace-Sticlyjes transform of the distribu-
tion functions of S, is given by
gtix(s)
1 — pH*(s)

G*(s) =

From [5], when the queue capacity is infinite the departure process will be a renewal pro-
cess if and only if §, is exponentially distributed with parameter a, and will be Poisson in that
case. But this implies that H*(s) must satisfy

al/ta + s) = gl )/ 11— plH* ()],
The only solution here is
sy = —4L4
alqg + s
which implies /(1) is exponential. -

3.2 Outputs and Inputs

From Section 2.2 it is clear that the output process is a Markov-renewal process whose
distributions are given by 4 (i.j.x). From these. the following results are obtained.

THEOREM 2: The output process {7, = T, 1 is a renewal process if and only if ¢ = |
and H(1) =1 — ¢,
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PROOF: If ¢ =1 and H(r) =1 ~ ¢ *', the output process and departure process are
identical processes. Furthermore, the processes are both departure processes from a AM/AM/!
queue without feedback. From [5] we have that this departure process is a Poisson process and
"if" follows. To prove "only if" we consider the contrapositive statement and assume ¢ = 1.
(The other side of the contrapositive would have H (1) # 1 — ¢ #'. But then "only if" foliows
trivially from [5]. Thus, we need only consider the case of ¢ # 1.) Equations (3.1) and (3.2)
in [5] can be modified in such a way that one can show that if ¢ = 1, there is no solution to
both of those equations simultaneously. Then using the same arguments as in [5] one has that
{T, — T,_,} is not a renewal process and therefore "only if" is proven. (1

To be more specific, Theorem 2 can be particularized as

COROLLARY 1: The output process { T, ~ T,_} for the M/AL/! queue is a Poisson pro-
cess if and only if ¢ = 1. One can prove this result (in fact it is obvious) directly from
Theorem 2. The following is an alternate proofl that exposes a bit more of the properties of
these systems.  Again we use a contrapositive proof for "only if".

PROOF: Define
FI)=pPriT, - T, , < x}.

F(x) = m AU where U is a column vector all of whose elements are 1, 7 is the vector of limit-
ing probabilities given in Section 2.4 for { Q4 (n)} and 4 is the matrix of 4 (i j,x). Then from
Theorem 1 one obtains after some algebraic manipulations:

(5) Fix) = [q - i— f“" [(T—e 2 MTdH () + |p + ﬁ H(x)
for any M/G/1 queue with instantancous, Bernoulli feedback.

For H{y) =1 — ¢ #' it {ollows that
(6) Flix)=1—- 4870 o PR 3,

M A M= A
Thus, single intervals are not exponentially distributed and the output process is not a Porsson
process if ¢ Z 1. On the other hand if ¢ = 1. then we fulfill the conditions of Theorem 2
Hence, {T, — T,_,} is a renewal process. But from (6) this renewal process has exponentially
distributed intervals and thus is a Poisson process. |

Formula (6) was previously found by Burke [2] for the distribution of times between
inputs. The input process can be analyzed as follows:

THEOREM 3 If H(x) =1—¢**, the process {Q, (n). T, - T, |} is a Markov-
renewal process with kernel
YGjix)=PrlQ, )y =4 T, - T, , £ x|Q, (n = 1) =]
given by
0, j>i+1,
fn‘(v Mege M gdH " (s). j =0, 20,

Y(jx) =

AY
Joe T e v gt N < <
”

erMl—e ™), j=i+1,

| — , . 4
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Ho,—us
where dH'"*V(5) = plps)e? ds.

n!

PROOF: Clearly, if j > i + 1 then Y(ijx) = 0. If j = 0 then Y (i x) is the probability
that the i + 1 customers in line al! depart before x and the first arrival occurs after the last
departure, but before x; or, the first i — | customers depart, but the last one feeds back before
X, and there are no arrivals while this is happening.

If 1 € < ithen Y(ijx) is the probability that i — j + 1 customers depart before x, no
arrivals occur during this time, but between the last departure and x, an arrival occurs before a
departure; or, i — j + | customers are served before x, the first i — j depart, the last one feeds
back. and there are no arrivals while this is happening.

If j =i+ 1 then Y(ijx) is the probability that there is an arrival before x and no depar-
tures before x. Since Y(1jx) never depends on {Q5 (k). k < n— 1} or [T} k < n), the

—

process {Q5 (n), T, — T._,} is a Markov-renewal process. |
Now, if Y{x) is the matrix whose elements are Y (i jx). w is the vector of probabilities
found in (3) and U is a vector all of whose elements are | then it is easy to see that
F)=PriT, - T, £ x]=7Y(x)U
and
G(x.y)_= PriT,— Ty <x, Thy—-T,<yl=mtY)Yu)U.

where F(x) is the F(x) given by (6). Of course, if { T, — T,_,} is to be a renewal process then
it is necessary (but not sufficient) that

Glxy) = FIOFL),
From this we can conclude:

COROLLARY 2: The input process to the M/M/I queue with instantaneous, Bernoulli
feedback is not a renewal process unless ¢ = 1.

PROOF: If ¢ = 1 then the input process is just the arrival process which is Poisson.
If the input process is a renewal process for ¢ # | then it must be true that
v.m Y (U = Flx)
wxi, Y} YU = F(x)F(y) where

F(x) is given by (6) and Uis a column of 1's. Thus,

T Yix)]| .. .
- ——— | Y = 0.
v Foo |0
Some algebra vields
m¥ic)| . Flo) =l —¢ "9t pa P aoar
_ () = - ) Ay s M + , i ‘ )
[” Flx) l’-‘ v Fx) w— A P '"
g =1,
Fix)— (I —¢#r)=¢+ — HLN—)\—(' DA
Mmoo A M= A
<o BITA uv  _BD v
H = A m— A

— — p
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Thus, to show that the input process is not renewal, it suffices to show that for some »,
pk (’_A'—L(“-'-}»p()"l"“.';ﬁ()_
M —A m— A
The third term of the Taylor expansion of this expression is
pA_ A1 pu L2+p(y+/\)=[)k[1¢0
n—\ 2 m—A 2 2 2 '
so (by [1, 198] for instance). it cannot be identically zero unless p = 0 (ic., g = 1),

It seems obvious that the arrival process and feedback process are not independent
processes. One can show, using the above arguments:

COROLLARY 3:* Either the feedback process is not a Poisson process or the arrival pro-
cess and feedback process are not independent processes (or both) for the M/M/I queue with
instantaneous, Bernoulli feedback.

PROOF: This result follows immediately from Burke's result [2] on the distribution of
the interinput arrivals. For if the feedback process is both independent of the arrival process
and is itself a Poisson process. the input process is Poisson. Thus, Burke's result contradicts
the assumption. [ ,

3.3 Feedback

The feedback stream seems to be quite difficult to work with. From the previous section
we know that it is either not independent of the arrival stream or not a Poisson stream
Melamed [9] has shown that this feedback process is not a Poisson process. We conjecture
further that it is not independent of the arrival process. If so, then the known superposition
theorems cannot be used to study feedbacks in terms of the arrival, feedback and input
processes.

Since the feedback stream is the result of applying a filter to the Markov-renewal output
process, it is itself Markov-renewal on the state space {1,2, ...). Even in the M/M/1 case. the
form of the feedback stream does not appear 10 reduce to that of any simpler process.

4. CONCLUSIONS

There are several conjectures that one can pose concerning networks based on the results
of this paper. First with respect to queue length, busy period, and departure processes. If on¢
adopts the "outsiders" view {3] these processes appear to be those generated by an M/G/1
queue without feedback. However, if one adopts the "insider” view the queue length process
does not appear to behave as seen by the "outsider.”

Flow processes in this network cannot be explained by appeal 1o superposition, stretching,
and thinning results for Poisson processes. The requisite independence assumptions both
within and between streams of events are not satisfied here. Thus, one cannot assume that
these queues which act "as if" they were M/M/1 queues to the "outsider” are M/M/1 queues
to the "insider." In particular, this hints at the possibility that in these networks, even as simple
as Jackson networks, any attempt to decompose the network into independent M/M/1 queues
is doomed to failure. This decomposition must account for the internal flows and these not
only appear to be non Poisson, they are nonrenewal and are dependent on each other.

*Melamed [9) has shown, using other arguments, that the fecdback Stream s not a renewal progess
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In [9], it is shown that in the Jackson structure, the flow along any path that returns a
customer to a node that he has previously visited is not only not Poisson, it is not renewal.
Thus, if Jackson networks have loops, (direct feedback as in this paper being the simplest
example), they cannot be decomposed into sub-networks of simple M/M/1 queues. In particu-
lar, these results imply that a node-by-node analysis of waiting times depending as they do on
the "insiders” view is not valid if one simply uses M/M/1 results at each server. Takdcs {10]
studies the waiting time problems in the system discussed in this paper. Disney [6] presents
another view of the same problem.
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ABSTRACT

minimize total expected costs while satstving all demands on time

This paper presents a single-item inventory model with  determinisue
demand where the buver is allowed to search tor the most favorable price be-
fore deciding on the order quantity. In the beginning of each period. & sequen-
tial random sample can be taken from a known distribution and there s a tined
cost per search. The decision maker is faced with the task of deading when 10
initiate and when to stop the search process. as well as determiming the optimal!
order guantily once the search process is terminated  The objective s to

We

demonstrate that a set of critical numbers determine the opumal stopping and
ordering strategies.  We present recursive expressions yvielding the entical
numbers, as well as the mimmal expected cost from the beginning of even

peniod to the end of the horizon

1. INTRODUCTION

This research is an attempt to marry some aspects of search theory and optimal stopping
with inventory theory. Following the pioneering work of Stigler {111, [12], searching for the
lowest price is considered a basic feature of cconomic markets. By citing examples based on
real data, Stigler [11] asserted that prices change with varying frequency in all markets, and
unless a market is completely centralized, the buyer will not know for certain the prices that the
various sellers quote at any given time. This suggests that at any time there will be a frequency
distribution of the prices quoted by sellers. If the dispersion of price quotations by sellers is
large compared o the cost of search, it will pay—on average —to obtain price quotations from
several sellers before taking an "action”  The vast literature on scarch theory (a survey of
which can be found in Lippman and McCall [8]. DeGroot 151, and Rothschild [10]) is con-
cerned with rules that the scarchers should follow when the "action” is accepting or rejecting
pricc. Once the price has been accepted. the decision process terminates,
models, the action is more comphicated.  In inventors models, tor example. the deasion not
only involves accepting or rejecting an ordering price but how much to order, an action which
will affect the scarch and ordening policies in future periods  In this paper we study such a
model. We seek the best scarch and ordening pohcies tor a simple dvnamic inventory problem
with determunistic demands where, in the beginning of cach period, the purchaser can search

for the lowest price before placing an order

Thisy rescarch was partally supparted by the Nt Saence Foandanen through Geant NSEENG TS 13394 4nd the
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Classical optimal search considers the following problem: A purchuaser can take a sequen-
tial random sample X, X5, .. from a continuous distribution with 4 known distribution func-
tion F. There is a fixed cost s per observation. Suppose that i’ the decision maker stops the
sampling (search) process after the values X, = xi0 Va = vo o0 X, = v, have been observed.,
his cost is x, + s». Hence, the problem is to find a stopping rule which minimizes £ (X, + sN)
where N indicates the random number of observations that are taken under a specitied stopping
rule. It can be shown that, whether sampling is with or without recall, the optimal stopping
rule i1s characterized by a unigue critical number v* (usually cafled the reservation price) so that
an optimal sampling rule is to continue sampling whenever an observed value exceeds v* and to
stop the pracess as soon as some observed value docs not exceed v Viaricus versions of this
problem have been studied by MacQueen and Miller [9], Derman and Sacks (6] and Chow and
Robbins {21, {3] among others.

The above search model can be visualized as a one pertod purchasing problem in which
one unit of some commodity has to be purchased at the beginning of the period  Now consider
a dynamic multiperiod version of this problem where 4 demand of one unit hus to be satistied
in each period and inventory holding cost is charged for items held over for use in subsequent
periods.  As in the classical scarch problem, in the beginning ot cach period o sequential ran-
dom sample XX, ... can be taken from a distribution with known distribution function f.
but the decision process is not terminated as soon ds an aceeplable value is observed. The deai-
sion maker is taced with the task of deciding how nmuch to order so as 10 nunimuze 1ol
expected costs while satistving all demands on time. When the inventory fevel s sufticient 1o
satisty the immediate demand. he has also the burden of deciimg whether o inmtate scarch at
all. This multiperiod nlodel is the subject of our study o ttos papes

In Scection 2, we present the model. In Section 30 we pive the opumal scarch pohiey and
in Section 4, the optimal ordering policy. We show the intuitive result that an optimal strateps
preseribes thit search should be inttiated only when the inventory fevel s zero burthermore,
we show that the reservation price property of the classical scarch problem sull holds  That s,
when the inventory level is zero (and therefore scarch has to be mitiated? and # perods remuan
1o the end of the problem. there exists a reservation price o, such that u price should be
accepted i it does not exceed o, and rejected otherwise In Section 40 we show that once
price has been accepted, a finite number of critical numbers speety the optimal strateey The
critical numbers divide the interval [0.0,] into segments so that the interval i which the
accepted price falls determines the optimal order quantity,. - We gave recursive eapresstons which
vield a,, as well as the minimal expected cost for any period to the end of the honizon We will
also obtain expressions describing the eritical numbers when the holding cost function is con-
VOX,

2. THE MODEL

Consider a4 multi-period single-item inventory model i which a demand ot one unit has
to be satisfied in the beginning of cach period and an mventory holding cost s charged  In
cach period, o sequential random sample YV V. 0 of ordering prices can be generated frony
continuous distribution with known cumulative distribution tunction 7€) 270V < oo ynd the
N are mutually independent. The cost of generating cach random piice s s and there s no
limut on the number of observations which can be made 1 cach period  After recenvang a price.
the decision maker has to decide whether to aceept that price or generate another offer 1t he
aceepts the offered price. he s faced with the decision of how much to order When the inven-
tory fevet s sufficient to satisty the immediate denund. he abso has o decide whether o mtate
search at all - The objective s to numimuze the total expected costs
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We assume that the length N of the planning horizon is finite, initial inventory is zero,
backlogging of demand is not allowed, the cost of holding z units for one period, /() is non-
decreasing in = and 7 (0) = 0, the purchasing cost is linear in the quantity ordered. and oniy
integer quantities can be ordered. We also assume prices that are not accepted immediately are
lost; in view of our results, sampling with recall (of prices in the same period) extends no addi-
tional advantage over sampling without recall, and hence would not affect the search policy.
Note that when N = |, this model reduces to the classical search problem.

Let # be the number of periods remaining until the end of the horizon. = the inventory on
hand with » periods remaining and x the last price received. In each period. our state space
consists of numbers (z) and pairs {z.x) corresponding respectively to the state of the system
before a search is placed and the state when a secarch has been placed and an offer x has been
received. A policy for period » prescribes a search decision for state (2), and a reject-accept
and ordering decision for state (z,x). We assume that for each period an optimal policy exists.
Moreover, we restrict our attention to history-independent policies: that is, once the price x has
been rejected, we are in the same position as having not placed the scarch at all. Schematically,
remembering that demand in cach period equals one, the period-state pairs correspond to each
other as follows:

Forz 2 |t

Reject !

1 4 N T Ry .. A . .
(n=) Search ,H_:“\_)Augpl xand order an amount ¢ =1 4+a=1
Dy, n
W
(n—1,2-1)
and

Reject ¥

ol o) Search (,," 0.v)Accept x and order an amounta_ ., ,_})

3. OPTIMAL SEARCH POLICY

In this sectior, we present the optimal search policy. We show that search should only be
initiated when the inventory level is zero. and prove that in each period a single reservation
price determines the stopping rule. We also give a recursive c¢xpression which describes the
sequence of reservation prices.

To being, define

b o(z.x) = the minimal (conditional) expected cost during the last # periods when the
inventory level with n periods remaining is = and the last price offered is y

\

(z) = the minimal expected cost during the lasi # periods before the decision to
search for an offer is made. and when the inventory level with n# peniods
remaining is o

"
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u,(z) = the minimal expected cost during the last n periods after the decision to
search for an offer in this period has been made, and when the inventory
level with n periods remaining is =.

w,(z) = the minimal expected cost during the last n periods after the decision not to
search for an offer in this period has been made, and when the inventory
level with » periods remaining is z, = 2 1.

H(z) = the total holding cost of = units to be used in = consecutive periods.

Hence, we will have the following relationships:

§3] v, (z) = minlu, (2}, w, ()]
2) V,(z,x) = minlv,(z). €llr!;nin . lax + hic+a =1 + v,z +a~ DI,
(3) w,(2)=s + EV, (0],
(4) w,()=nGz=D+v, -1, 21,
and
-1 -1
(5 H) =Y hz— i) =3 hii).
1= i=|
Define
(6a) Lixal=ax+ hta— 1D+ v, (la—1
and
(6b) [,(x} = min II,,(.\'.a).

at 1.2
and let g, (x) be the minimizing value of @ in (6a), that is,
{6¢) 1,(x)=1,[xa,(x)]

The quantity /1,(x) is the minimal expected cost attainable during the last # periods when the
inventory level with n periods remaining is zero and it has been decided to accept v, the last
price offered.

At this point it is natural to ask whether when » periods remain, there exists a single cniti-
cal price a, which dictates the acceptance or rejection of a price x when the inventory level s
zero. In other words, is there an a, such that it is optimal to accept the price x (and order a
positive amount) if x < a, and to continue the search if v > «,. That this is indeed the case.
is verified in Theorem |

Detinc
{7) a, =1, v, (0)],
and the sequence {4, by the following recursion:
(8a) Ap=0
and
(8b) A Fla,) =5 + f“ min lax + H(a) + 4, JdF () forn > 1
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We will show later that a, exists and that 4, equals v,(0), so that a, = /,'(4,). These pro-
perties are exploited to verify that an optimal policy prescribes that search be initiated, and ord-
ers be placed. only when the inventory level is zero. Furthermore, we will show that if the set
of prices at which it is optimal to order one unit is nonempty. a, = 4, — A, ., so that Equation
(8b) can be written as

,4" .4” .
9) AF 4, ~ 4, ) =5+ | " min lax + Ha) + A, JdF(),

0 a€ 1.2, .nl
enabling us 10 obtain the minimal expected cost from the beginning of any period to the end of
the horizon by finding {4,},Yo. the unigue set of solutions 10 Equation (9).

THEOREM 1: If the,inventory level with n periods remaining is zero, it is optimal to
continue the search if x, the last price offered, is greater than «, and accept the price if
x<a, wheren=1,2 .... NV

PROOF: Clearly, /,(x.a) is continuous in x for each n and a, and therefore, /,(x) is a
continuous function of x. Furthermore, for all positive numbers €,

Lix+e)=1Ix+e a,(x+e)] > Llva,(x +e)] 2 Llxa,(x)]=1(x),

and hence [,(x) is strictly increasing in x. Let «,(v) be such that [ la, () =y, ie.
a, () =1,'(). Since

v, (0) 2 v, 1(0) 2 min
[1AS 2

de (120

| hita = D+ v, (a - D]=1,00),

it follows that «,, = «,lv,(0)] exists and. as /,(x) is strictly increasing in x. it is unique (see
Figure 1). The first inequality of the above expression follows from the fact that for the n — 1
period problem we can always follow the optimal policy for the n period problem, so that at
each stage m, » — } 2 m 2 1, we would adopt the action prescribed by the n period optimal
policy for stage m + 1. Thus, the expected cost for the n — | period problem under this pol-
icy, v,. {0}, would be equal to the expected cost of the first n — 1 periods of the n period prob-
lem, and hence v, {0) € v,(0). Since v,_1(0) < v,_,(0), it follows that v,(0) is nondecreas-
ing in .

1, (x)

vnh(0)

[,(0)

Fruawe |
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From (2) and (6) we have
V,(0.x) = min [v,(0), 1,(x)].

If x € a,, then /,(x) £ v,(0) so that ¥,(0,x) = [,(x) and search terminates. If x > a,,
then /,(x) > v,(0) so that ¥,(0,x) = v,(0), in which case it is optimal (o continue the search.

QE.D.

Thus, when the inventory level is zero, a single critical number determines whether a
price should be accepted. We are also interested in finding the optimal strategy when the
inventory level is positive. It seems intuitive that if the immediate demand can be satisfied by
the current inventory, it would be best to postpone the search—since it is possible to incur the
same amount of expected search cost in a later period while saving on the holding cost. The
next result, the proof of which is given in the Appendix, verifies this observation. In addition,
it shows that the expected cost from any period & in which the inventory level is zero to the
end of the horizon equals 4. Thus, the expected cost from any period can be determined by
computing the sequence {A,} from Equation (8b).

THEOREM 2. Under the assumptions of the model, forall k, k = 1,2, .... N,
(a) Vi 0) = Ay
() vi(2) = H(zZ) + v, (0) forl €z <k

Theorem 2 verifies that search should be initiated only when the inventory level is zero,
and Theorem 1 gives a rule for accepting or rejecting an offered price once search is initiated.
These two results however, do not completely specify the optimal strategy. Given that an
acceptable price is received, we would like to know how much should be purchased at that
price. This question is investigated in the next section.

4. OPTIMAL ORDERING POLICY

In this section we present the optimal ordering policy once an acceptable price has been
received. In Corollary 3 we show that a nonincreasing sequence of critical numbers characterize
the optimal order quantity. In other words, once a price is received that is less than the reser-
vation price for that period, the interval in which the offered price falls determines the quantity
that should be ordered at that price. In Theorem 5 we obtain expressions which describe these
critical numbers when the holding cost function is convex.

Before presenting the next result we note that when 2 periods remain. the inventory level
is zero, and an acceptable price has been received, the optimal order quantity is equal to a,(x)}.
To see this, note that .

¥, (0.x) = minl(v,(0), I,(x))

by (2) and (6). This fact coupled with Theorem | yields V,(0,x) = /,(x) whenever x < «a,,.
Finally, since

10 1(x) =1 [va,(x)]= aniE lax + hla — 1) + v, (la = D],

it follows that ordering a,(x) minimizes the expected cost attainable during the last n periods

when the inventory level is zero and x € «a,. Note also that by Theorem 2(b}, Equation (10)
can be written as
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an LAx)= min lax + H(a) + 4,_,).

ISasn

COROLLARY 3: If n periods remain, the inventory level is zero, and an acceptable price
has been received, then the optimal order quantity is nonincreasing in the price offercd. ie..
a,(x) € a,(x) whenever x’> x, n=1,2, ..., N. Consequently. a nonincreasing scquence
of critical numbers {B,(n)}/~, characterize the optimal order quantity. Specifically, it is optimal
to order A units whenever B, (n) < x < B,_,(n).

PROOF: From (6¢) and (11}, we have
L(x) = 1[xa,(x)] =a,(x) x + Hla,(x)] + 4

noa, )

€ Lixax") = a,(x) - x + Hla,(x" + 4,.

w i
giving
(12) vla,(xY = a, (] 2 4, (= Ay oo+ Hla, (O] = Hla, (x)].
If a,(x} > a,(x), then (12) implies

vla,(x) = a, () > A,y 0~ Ay g0+ Hla, (0] = Hla, (X)),
which yields

L) = a,(x) - x"+ 4, o+ Hla, (x> a,(x) - x"+ 4, )

+ Hla,(x)] = 1,Ix".a,(x)],

contradicting the fact that @, (x') is optimal when x' is offered. QED.

Intuitivelv, we would expect that when an offered price equals the critical number «,,. we
would be indifferent between ordering one unit and not ordering at all. 1f this were indeed the
case, the expected cost when the price is rejected. v, (0), would be equal to a, + v, {0) vield-
ing a, = 4, — 4,_,. This result could then be used to obtain a simple expression for the
B, (n)'s when A (-) is convex. As we will show in Lemma 4, the above result holds if the set of
prices at which it is optimal to order one unit is nonempty. Unfortunately. as seen from the
following example. this is not always the case.

EXAMPLE . Letn=25,5s=35_h(:)=0 for all - and the price distribution be such that

PIX=2=1-¢€, and Pla £ X € b) =%(h—a) for 0 < a < b <4, where 2 s

excluded from all intervals and € is an arbitrary small number. Suppose the offercd price in the
beginning of the fifth period is 3.

The expected cost of rejecting the offered price is (approximately)
S+2x5=15

as one would pay the search cost of 5 and almost dehinitely receive the price of 2. at which one
would order § units. However, the expected cost of ordering 7 units, 1 < 4, is (approximately)

Ji+S+25-0 =15+

while the cost of ordering 5 units is 15, Hence, we would be indifferent between not ordering
and ordering at x = 3, which implies that a = 3.

—
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Since at x = 3 we order S units, any price above 3 is rejected. and the optimal order quan-
tity a,(x) is nonincreasing in x, it follows that [x :a,(x) = 1] is empty.

LEMMA 4: If {x:a,(x) = 1] is nonempty, thena, = 4, — 4,-;.

PROOF: Let x be the largest x such that a,(x) = 1. By Theorem 1, a, is the highest
price at which it is optimal to order a positive quantity. Therefore, ¥ < a,. Consequently, we
can conclude from Corollary 3 that a,(a,) < 1, but a,(a,) is positive so that a,(a,) = 1.
From Theorem 2 and Equations (7) and (11), we have

A, =v,0)=I,la,)= min laa,+ Ha) + A4,_,]

ISagn

= {an(an) e + H[an(an)] + AnAu"hx"l} = a, + H(l) + An—l'

which yieldsa, = 4, — 4,_,. Q.E.D.

Whereas we cannot determine in advance the conditions under which Lemma 4 would
hold, we can proceed by assuming that the lemma holds, and determine the sequence {4},
that satisfies Equation (9). We then can obtain {a,} froma, = I,'(4,). If {a,} and {4,} also
satisfy Equation (8b), by uniqueness of the solution, a, is indeed equal to 4, — 4,_,.

It is interesting to note that contrary to what one might expect, a, is not monotone in n.
Before Theorem 5, we give examples where a, is not monotone irrespective of whether
Ix:a,(x) = 1] is empty or not.

EXAMPLE 2. (a) Consider again Example 1. Since we would almost definitely receive
the price of 2 after the first search, we have
v, (D) =5+ min lax + H(a) + v, (O]

<asn

Thus,
vil)=54+2=7
vi0) =S5+ min(2+7,4) =9,
From v,(0) = [,(«,), we have a; = v|(0) = 7 and
9=min{a; + 7.2 a3)
yielding a; = 4.5. As shown earlier, as = 3. Therefore, «,, is not monotone in n.
(b) We note that a, is not necessarily monotone even if [x:a,{(x) = 1] is nonempty. Con-
sider the case where the price distribution is the same as Example 1. However, there is a hold-

ing cost of 1 per unit per period and s = 2. Then. H{(1) =0, H(2) =1, H(3) =13 and
H{4) = 6 and

vil0)=2+2=4

vill) =2+ min[4+1,2+4]=7

vilD) =2+ minf6+3.44+1+42+7 =11

vl =2+ min(8+66+3+44+1+72+11]=14

e
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From v,(0) = /,(a,), we have
4=aq,
7= min [2a; + 1,a; + 4]
11=min Ba;+3,2a;+ 1 +4,a;+ 7]
14 = min [day + 6,3as+ 3+ 4,204+ 1 + 7,4 + 11]
yielding
a=4, a;=3, a3=4, a;=3.
Note that in this example, a,(a,) = 1 for 1 £ » < 4 and the condition for Lemma 4 holds. It
can be easily verified thata, = v,(0) — v,_(0) forali ] < n < 4.
THEOREM 5: If the condition for Lemma 4 holds and if the holding cost function 4 (-)
is convex, then
(13) Bin)=a, ,— hik), wherel < k < n

PROOF: We have to show that
(a) The RHS of (13) is nonincreasing in k.

(b) It is optimal to order k units if x, the price offered, satisfies
(14) [+ F h(k) S X S Ay (k—1) — h(k - l)

To show (a), we note that

Apis1 = Vi1 O =L la,_ye)) = min [aa,-
n—k+1 n—k+1 n—k+1\Xn—k+] 1€aSn—k+1 n—k+1

+ H(a) + Ayp_jy1-0) € 20,400+ H(Q2) + A4
= Z(AH—IH’I - A"_[() + h(l) + A,,_k-lv

where the first equality follows from Theorem 2, the second from (7), the third from (11) and
the last from Lemma 4. Thus, by convexity of # (),
h(k) - h(k - 1) 2 h(l) 2 An——k - An—k—l - A"‘k+| + An—k

S QT Opk+]
and, therefore, (a) is true.
To show (b), suppose x is such that (14) holds. We show that /,(xk — j) €

I,(x,k — j~ 1) for each j 2 0, and therefore ordering k units is at least as good as ordering
any amount less than k. Suppose /,(x,k — j) > I,(x,k — j — 1). Then

k—j=Dx+ Ay oo+ Hlk—j—= D) <k = j)x+ Ap_u-j + Hlk = j)
which yields
X > Apotheyoty = Aty — Hlk —j = 1)
=ay hjoy— Hlk=j =1 2 ap = hlk=1),

where the last inequality follows from (a). This contradicts the right inequality of (14). There-
fore, I,{x.k — j) < I, (xk — j—1). v
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LAk + ) < LAxh + 5+ 1) tor cach / 2 0 by a similar proof.

Hence, it is optimad o order & units whenever (14) holds. QLD

5. REMARKS

The purpose of this study has been to investigate optimal scarch policies in the context of
a sequential model. The underlying invertory model has been chosen as a rather simple one.
There are no setup costs involved and the demand equals one unit in cach period. 1t would be
interesting to investigate more general problems. We suspect that both the reservation price
property of Theorem | and the Wagner-Whitin [13) type result of Theorem 2 (order vnly when
current inventory level is zero) would stll hold for models with setup costs and arbitrary deter-
ministic demands. The optimal policy would be a tunction of setup costs s well as the holding
cost and price distribution. The results should also hold when the price distributions are non-
statonary. Given that the ininal inventory is zero, the ordering policy will be such that there is
no inventory in the beginning of periods with favorabie price distributions.

Another interesting extension is the case wherein the scarch process s adaptive.  The
scarcher does not know the exact distribution of price: the price offer is used not only ay an
opportunity to order at that price but also as a picce of information to update the prior distribu-
tion. When the distribution of prices is not known exactly. the form ol the optimal policy s
not obvious. As Rothschild [10] points out, the reservation price property of Theorem T would
not necessarily hold even for a one period problem. Rothschild presents the fallowing example.
Suppose there are three prices. ST, 820 and 83, and that the cost of search is S0.01. Prior
beliefs admit the possibility of onfy two distributions of prices. Either afl prices are S3 or they
are distributed between S1oand S2 in the proportions 99 to I A mun with these beliefs should
accept a price of S3 Gas this is a signal that no lower prices are (o be had) and reject ¢ quote of
S2 {which indicates that the likelihood that @ much better price will be observed on another
draw s high).

However, when the distribution is a member of certain families of distributions but has
one or more unknown paramcters, Rothschild [10], DeGroot |S] and Albright 1] have shown
that the reservation price property holds for the one-period problem. We conjecture that when
the distribution of price is stationary but is not known exactly, search should be initiated only
when the inventory level is zero. I this is the case and the distribution belongs to one of the
families of distributions studied by Rothschild (10] and Atbright {1]. then the reservation price
property as well as the ordering policy presented in Section 4 should stilf hold.
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APPENDIX

THEOREM 2: Under the assumptions of the modei, forafi &, A =1,2, ..., N,
(ll) VI\(O) = AA
b)) vi(z)=HE) + v, .(0) for | £z < k.

Consequently, the search process is initiated only when the inventory level is zero.
Before proving Theorem 2. we establish two elementary facts.
LEMMA A: For any two positive integers iand j, H(i + j} 2 H() + H(j).

PROOF:

1+ | XY

-1 r-d i)
HG+ )= Y hlk)=Y hik) + k) 2 3 hk) + 3 hik)
ey K= K~ A=

k=t

= HG) @ H(j). QED

a (i)

LEMMA B: The integral j:‘ "y = L)) dF(x) = G, (y) is strictly increasing in .
continuous, and unbounded above.

PROOF: Since /,la,(y)] = yand /,(x) is strictly increasing in x, it follows that a,(v) is
strictly increasing in y. Hence, G,(y) is strictly increasing, continuous {(as F is continuous} and
unbounded above. QED
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PROOF OF THEOREM 2: The proof is by induction on k. From Equations (1), (3), (2)
and (6), we have

(A-1) vi(0) = 4, (0) = 5 + E[V,(0,x)]

s + E min }v,(0), |Ti2A lax + h(a = 1) + v,_,(a — 1]

s + E min [v,(0), L (x)].

For k = 1, (b) is obvious. To show (a), note that by (6), /;(x) = x. Next, from (A-1)
we have

vy (0
Vi) = s + Emin [v@.x] = s+ [ xdF(x) + [ vi(0) dF(x),

L (0)

from which we obtain
)

(A-2) vi(0) Fiv @1 = s + [ xdF (x).

(Note the close connection between v,(0) and the maximizing price in the house selling prob-
lem.) In order to determine whether v,(0) is the unique solution to (A-2), noic that it is

n
equivalent to verify that s = L (y — x)dF(x) = G,(y) has a unique solution. The latter
result follows from Lemma B.

From (7) we have /| (a;) = v,(0) and therefore a, = v,(0). Thus, (A-2) becomes
o Fla)) =5+ j:; ' xdF(x),

which coupled with (8b) for n = 1, gives 4, = a; = v,(0) so that (a) holds for k = 1.

Assume (a) and (b) hold for k = 1,2, ..., n — 1. We show that the theorem holds for
kK =n

From (A-1), we have

v, (0) = s + E min {v,(0), 1,(x)]

s+ [ LW aF) + [ v, 00dF (0

I<asn

[Fla)] s + fu [ min fax + ha = D + v, (a - l)]ldF(x)l

= [Fla,)] "|s + f” [ min [ax + h(a = 1)+ H(a - 1) + v,,‘,,(O)]ldF(x)]

1<a<n

= [Fla,)] Ys + f [ min lax + H(a) + A, (,]ldF(x)]
0

I<asn

(Fla,)) "4, Fla,)
=4

"ne

where the second equality follows from Theorem 1. the third from a simple rearrangement of
terms, the fourth and fifth equalities from the induction hypothesis and the sixth equality from
(8b). Therefore (a) is true for A = n.
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Since we are assuming that (b) holds for K = n — 1, it follows that

{(A-3) 1,(x) = lmin lax + H(a) + 4, ]
and
AFa) =s+ [ 100 dF o,
which gives
(A-4) [ 1, — L dF ) = s,
(1)
We note that by (4) and the induction hypothesis, for 1 € = < »n

wl)=hz~-D+v, j=D=hz-D+HGEZ-1+v, (0
H(zY + v, .(0),

and therefore to prove (b) for & = n, it suffices to show v, (z) = w,(z) whenever - 2 1. That
15. we need to show i, () 2 H(Z) + v, _.(0) whenever = 2 1.

We can write

bsusn-:

u(z)=ys+ EFminlv, (), min fax+hz+a~1+v, ((z+a- l)]]

lSauxn -

=3+ Eminfuw, (), w,(2), min flax+hz+a—-D+v, (+4+a- l)ll

A

=s+ Eminfu,(z)., min lax+hiz+a-D+v, ((c+a- l)ll

e u<a =

=s+ Eminju,(z), min lax + H(z +a) + 4, . ‘,]l

\%

O g<un -

s+ Eminlu, Y H)+ min lax + Hla) + 4, . ‘,]l

= s+ Eminju,(2) HE) + minld4, . min (ax + H(a) + 4, .,)]l

< asn

=5+ Emin{u, () HG) + min v, (0,1, (_\')ll.
where the first equality follows from (3) and (2), the second from (1), the fourth from induc-

tion hypothesis and the last equality from the induction hypothesis and (A-31. The inequality
follows from Lemma A Hence,

(A-S) y = w2y - HGY 2 5 + F min ‘u,,(:) — M) min {v, (04, (\H’.

Iy were less than v (), then from (A-S) we would have

y 2 s+ Eminly.l, ()]
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giving
w, .y} a, ..
7 = L0V 3 s = [ A4, = 1, (0)dF (),
where the equality follows from (A-4). Hence,
Gu—:('y) 2 Gn-—:(/‘n—:) - Gu—:(Vu—:(O)]'

contradicting Lemma B. Therefore, y 2 v,_.(0), which completes the induction argument.
Q.E.D.
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ABSTRACT

Fhos paper provides an overview ol the Computer-Assisted Scearch Plannimyg
(CASPY svsiem deseloped tor the United States Coast Guard  The CASP in
tormatnion processing methodologs s based apon Monte Carlo simulation 1o
abiim an smtal probabilinn disinhunion tor target location and to update s
distribution to account tor dritt due o currents and winds A muluple seenanio
approach s emplosed 1o generate the gl probatibiny disinshution Bayvesian
updang s used tooretledr negative informanon obtaned from unsooeessiul
search The principal odtpat ot the CASP sustem s sequence o probababing
“maps” owhich display the current irget locatton prababihinn distnibutions
throughout the timie perniod ot terest CASPE also provides gundance for glio
cabg seatdh effort based upon opumal scarch theon

1. INTRODUCTION

This paper provides an overview of the computer-assisted search planning (CASP) system
developed for the United Suates Coast Guard to assist its search and rescue (SAR) operations
The system resides on a CDC 3300 focated in Washington, D.C., and can be used by all USCG
Rescue Coordination Centers (RCCs) in the continental United States and Hawaii via remote
access erminals.

The Coast Guard is engaged daily in search and rescue missions which range from simple
to complex. The amount of information available 1o predict the positon of the search target
ranges from extremely good to almost no information at all. The process of planning. com-
manding, and cvaluating these scarches takes place 1 Rescue Coordination Centers (RCCS)
located throughout the United States in major coastal crties

Fhe entre planning process begis with the awareness that o distress on the water mas
exist  This awareness usually results from a telephone call from a fnend o relative or from a
radio communication from the boat or vessel itself.
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Next all available information has to be evaluated to decide whether or not to begin a
search, and what level of effort is required given the search begins. Al this point a great deal of
effort goes into deciding where the distress incident occurred. This might be considered the
first phase of planning.

The next phase involves computing where the search target will be when the first search
units arrive on scene. Among other things, this requires the prediction of ocean drift and wind
velocity and the estimation of uncertainties in these predictions.

The next questions pertain to the effort allocation process—how much effort must be
expended and in what areas? Prior to the advent of computer search programs, SAR planners
relied upon various rules of thumb as presented in the National Search and Rescue Manual
[11]. Simplicity was necessary to facilitate hand computation, but at the same time prevented
adequate treatment of the many sources of uncertainty which characterize a SAR incident.

The search phase is the actual deployment of aircraft and vessels, the conduct of preset
search patterns. and the report of results back to the RCC.

It the scarch is unsuccessful for that day, then the results must be reevaluated and a new
scarch planned for the following day.

This process continues until the target is found or until the search is terminated. In brief
tand in stightly more technical terms), the planning phases are as follows:

(1) Determine the target location probability distribution at the time of the distress
incident

(2) Update the target location probability distribution to account for target motion prior to
the carhest possible arrival of a search unit on-scene.

(3) Determine the optisnal allocation of search effort, and estimate the expected amount
of scarch etfort required to find the target.

t4) Execute the search.

(%) 1f the search is unsuccessful. evaluate the results and update the target location proba-
hthits distribution 1o account for this negative information.

{6) Repeat the planning procedures in Steps (2) through (§) until the target is found or
the search s terminated

These planming phases are illustrated in the CASP case example given in Section 3.

The tirst efTorts at computerization concentrated on the target location prediction process.
Ocveanographic models were used to compulte drift and to estimate target position. The Mon-
terey Search Planming Program and the Coast Guard's own Search and Rescue Planning Sys-
tem SARP. represented early computer assisted search efforts. Even today, in cases where the
information avarlable makes the planning straightforward. the SARP program does nicely.

In 1970, the Office of Research and Development in Washington funded development of
a4 more comprehensive approach to search planning based in part on lessons learned in the
Mediterranean H-bomb search 1n 1966 (Richardson [5]) and in the Scorpion search in 1968
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(Richardson and Stone [6]). In 1972, the CASP system was delivered to the Operations
Analysis Branch of Commander Atlantic Area in New York for evaluation, implementation.
and training. The system was made operational early in 1974,

CASP is now in use in ] Coast Guard rescue centers. In addition, CASP has been used
at the Air Force Central Rescue Headquarters at Scott AFB, Hinois. 10 help plan and coordi-
nate search missions for lost airplanes within the continental United States. A modification of
the CASP system has also been provided 1o the Canadians for inland SAR planning.

At the present time, the use of CASP is limited to open ocean searches. Even though
these searches represent but a small percentage of the total U.S. Coast Guard search operations.
CASP has been credited with saving over a dozen lives.

Section 2 provides a description of the CASP methodology. Section 3 illustrates the use
of CASP in an actual SAR incident involving the 1976 sinking of the sailing vessel S/V Spirit in
the Pacific. and Section 4 describes CASP training.

2. CASP METHODOLOGY

The CASP information processing methodology is based upon Monte Carlo simulation to
obtain an initial probability distribution for target location and to update this distribution to
account for drift due to currents and winds. A multiple scenario approach is employed to gen-
erate the initial probability distribution. In the sense used here. a scenario is a hypothetical
description of the distress incident which provides quantitative inputs for the CASP programs
Bayesian updating is used to reflect negative information obtained from unsuccesstul search

The principal output of the CASP system is a sequence of probability "maps” which
display the current target location probability distributions throughout the time period of
interest. CASP also provides guidance for allocating search effort based upon optimal search
theory.

The CASP system is composed of a number of different programs. each designed for a
different information processing function. The program components are MAP. POSITION.
AREA. TRACKLINE, COMBINATION, DRIFT, RECTANGLE, PATH. and MULTI: the
functions are as follows:

(1) display the probability maps (MAP),

(2) generate an initial distribution of target location at the time of distress (POSITION,
AREA. TRACKLINE, and COMBINATION),

(3) update the target location probability distributions for moton subsequent 1o the tme
of distress (DRIFT),

(4) update the target location probability distributions for negative search results and com-
pute the cumulative detection probability (RECTANGLE and PATH), and

(5) calculate optimal allocations of search effort (IMAP and MULTD

These programs will be described below following presentation of an overview of the general
system design
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CASP System Design

The CASP system design was motivated by a desire (o provide a highly realistic probabilis-
tic description for the target’s location at the time of the distress incident and for the target’s
substantial motion. In view of the success achieved in the Mediterranean H-bomb search [12]
in 1966, and in the Scorpion search [5] in 1968, it seemed evident that a Bayesian approach
would provide a practical method for incorporating information gained from unsuccessful
search.

Target motion modeling posed a more difficult problem. Models which were amenable 10
an "analytic” approach were not flexible enough to give a good representation of the search
facts. For example, Gaussian motion processes (o1 mixtures of (Gaussian processes) were unsa-
tisfactory in cases where the search facts required a uniform or annular shaped target location
probability density. Markov chains based on transitions among search grid cells were unsatis-
factory in cases where one desired to change the grid in the course of an operation. In general,
these models tended to force the tacts o fit the mathematics to an undesirable extent.

It was also desired to develop a modular system so that additional features and improve-
ments could be made as time went on. In order to gain the confidence of the users, the system
had to be simple to understand and require a minimum of unfamiliar inputs. The design which
seemed best suited in view of the above considerations is a hybrid approach which uses Monte
Carlo to simulate target motion and analytic methods to compute detection probabilities.

A motivation for use of Monte Carlo was the recognition that computation of the poste-
rior target location probability distribution can be viewed as the numerical evaluation of a mul-
tivartate integral of high dimensionality. In such cases (i.e., high dimensionality), classical
numerical integration techmques perform poorly (see. for example, Shreider {7]) especially
when the integrands can have jump discontinuities and are not of a simple analytic form.
These problems are typical of CASP applications.  Discontinuities occur when the "target”
moves into a region where search effort is concentrated. and the joint probability density for
target position at several specified times during the search is a very complicated function.

The underlying structure of CASP is a Markov process, with a three-dimensional state
space consisting of points (X, ¥, ®). The varables X and Y denote latitude and longitude and
& denotes scarch failure probability. For j =1, ..., J. the gh Monte Carlo replication
(Y, Y., ®d) represents the target’s current position (time is implicit) together with the cumula-
tive probability of scarch failure for that particular target replication computed for its entire his-
tory. Target motion is assumed to be Markovian and successive increments of search are
assumed to be statistically independent. Thus (X,, }¥,, &) completely describes the state of the
ah target replication at a given moment.

Figure | provides a schematic diagram for the operation of the CASP system. All of the
programs mentioned will be discussed individually in subsequent subsections. The first step is
to construct « file (called the "target-triple file”) consisting of samples from the target location
probability distribution at the time of the distress incident. This file is stored on computer disc
and processed sequentially by various programs.

These imtial points (X, Y., 1) have failure probabilities &, = 1. since no search has yet
been carried out. The target positions (Y., V) are sampled from a probability density function
F of the form
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where f, is the density corresponding to the kth "scenario,” and w, > 0 is the scenario’s subjec-

A
tively assigned weight | Y w, = 1]
K=l

Monte Carlo samples from a probability density F are obtained by first using one of the
"generation programs” POSITION, AREA, or TRACKLINE. Averages of densitics of different
types are obtained by forming preliminary target triple files with two or more "generation” pro-
grams and then combining them with the program COMBINATION. The construction of the

prior target location probability distribution is shown schematically in Figure 1(a).

Updates for target motion (Figure 1(b)) or to account for negative search results (Figure
14¢)) are carried out by reading the "old" target triple file from disc into the appropriate pro-
gram and outputting a "new” target tripie file. When program DRIFT is used (Figure 1(b)), the
values of X and ¥, are modified, but the value of &, remains unchanged. For an update for

aiaihaiuin ki el
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negative search results, the file is first updated for motion by use of program DRIFT. The tar-
get triple file is frozen at the mid-search time and then modified by RECTANGLE or PATH.
These programs modify @, by use of Bayes' theorem but the position variables X, and Y,
remain the same since motion is frozen.

The probability dist:ibutions and optimal allocations of search effort are displayed using
program MAP or MULTI (Figure 1(d)). In both cases, this is a read-only operation, and the
target triple file is not modified.

Display

The MAP program displays the target location probability distributions in a two dimen-
sional format. Figure 2 shows an example of a probability map corresponding to an actual SAR
case. The geographical region is divided into cells oriented north-south and east-west and the
target location probabilities* for each cell are multiplied by 10.000 and displayed. Thus, the
number 1800 in a cell indicates that the target location probability is .18. Equal probability con-
tours are usually sketched to make it easier to visualize the probability distribution.

127 20W  127-10W 127-0 W  126-50W 126-40W 126-30W 126-20W 126-10W 126~ OW 125-50W 125-40W  125-30W
127-10W  127- OW  126-50W  126-40W 126-30W 126-20W 126-10W 126- OW 125-50W 125-40W 125-30W 125-20W
49-50N
2 3 1
49 40N .
4 6 5 19 4 1 1
49 30N
8
49 20N
15
49 LON
a4
49 ON
26 - 6
48- 50N e — st =
107 \ 18
48 40N [ | N— = o
Qn
48 30N |
L9
48 20N . R e -
65 65 78 89 (120 164 115 3 7 10
48 1ON - - ——m——
62 68 . 43 47 19 Tre— - -
49 ON . . -
Biotre 1 Target tocatbon probabilite distoibation probabilines are multphed at 10,000 and truncated

A "quick map” in which symbols are used to represent ranges of probabilities can also be
output. The guick map provides a compact version of the probability distribution which is suit-
able for a quick appra sal of the search situation and is convenient for inclusion in afier-action
reports

Finally, MAP can output an ordered list of the highest probability cells and the amount of

cffort to be placed in cach cell in order to maximize detection probability. More will be said
about search optimization in the last subsection.

SThe ot amplics higher accuracy than sowarranted i view ol the Monte Catdo procedures emploved

(SEPR YN
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Initial Target Location Probability Distribution

The initial target location probability distribution is constructed from "building block dis-
tributions” using a weighted scenario approach. The individual building block distributions are
generated by the use of one or more of the programs POSITION, TRACKLINE, and AREA.
Program COMBINE is used to combine the outputs of the individual "generation” programs.

In most SAR cases, there is scant information available about the target’s position at the
time of distress. Sometimes, for example, a fisherman simply is reporied overdue al the end of
a day. He may have been planning to fish in one of several fishing grounds but did not make
his precise intentions known.

In other cases, more information is available. For example, it might be known that a
vacationer was intending to sail from one marina to another but never arrived at the intended
destination. In some cases, it might also be known that there was bad weather along the
intended route. This would make some positions along track more likely for a distress than
others.

In order to encourage inclusion of diverse possibilities in these scenarios, it is a recom-
mended practice for two or three search planners to work out the details together. The
remainder of this subsection will describe the programs POSITION. AREA. and TRACKLINE
which are used to simulate the scenarios and generate the initial target location probability dis-
tribution.

Position. A POSITION scenario has two parts. an initial position and a subsequent dis-
placcment. POSITION can be used to generate a weighted average of ds many as 1en scenarios

The inttial position probability distribution is modeled as a bivariate normai distnbution.
and the displacement is modeled as a distribution over an arnular sector. In the fatter distribu-
tion, the angle and distance random variables are assumed 10 be independent and unitormly
distributed between minimum and maximum values input by the user. The displacement distn-
bution is usefui, for example, in cases where the initial position corresponds 1o the last fix on
the target and where one can estimate the course and speed of subsequent movement prior to
the occurrence of the distress incident.

The displacement option can also be used in cases involving a “bail out” where it can
describe the parachute drift. The amount of displacement in this case will depend upon the
alutude of the arrcraft and the prevailing winds at the time. Since these factors are rarch
known precisely, the capability to "randomize” direction and distance is an important feature

Area. The second generation program is AREA. This program is used to generate an int-
tial target focation probability distribution in cases where a general region can be postulated for
the location of the distress incident but where a normal distnbution simulated by POSITION
would be a poor representation of the uncertainty. Each scenario for program ARFA deter-
mines a uniform probabitity density within a convex polvgon  AREA nught be used. for exam-
ple. when a lost fisherman’s usual fishing ground is known from discussions with friends and
relatives.  As with POSITION, AREA can generate a weighted average of 10 scenarios
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Trackline. The third and last gencration program is TRACKLINE. This program is the
most complex of the generation programs and is used when target track information is available
from a float plan or some other source. TRACKLINE creates a probability distributien about a
base track. This track can be constructed from as many as 10 segments, each of which can be a
portion of a rhumb line or of a great circle.

The motion of the target about each base track segment is specified by three circular rior-
mal probability distributions corresponding to target position at the initial, mid-point, and end-
point of each segment. Each simulaled target track is obtained by drawing random numbers for
target position from these distributions and then connecting the points with straight lines.

Figure 3 illustrates a wypical situation. The target’s point of departure and intended desti-
nation are assumed known, and a base track is constructed between these points. The base
track might be wken from the wrget's float plan or hypothesized from the target’s past habits.
In the case illustrated by Figure 3, there are three track segments. The 50% circles of uncer-
tainty are assumed to grow in size 10 about midway along the track and then diminish. Since
the point of departure and intended destination are assumed to be known, the extreme end-
points of the enure track have zero uncertainty.

b o b Lt et lanaly 2ot o
Midseqemnt 50% crecie of ungeetainty (st Stpnment]
Eroegment 50 cuche ot uncertainty
fLammon 1o st andd second seqment)

Midseqoat 50% circte of uacertainty
fsecond spgment)

Endseqment 50% circle of uncertainty
fcommon to second and third seqments}

Mitsedaenent 50% oircle al uncertamty
1thrd spgrment|

’a

V, ntended desthnation (Unceitanty Zemg)

Fuaort U Descopnon of acklinge uncernanies
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Trackline. The third and last generation program is TRACKLINE. This program is the
most complex of the generation programs and is used when target track information is available
from a float plan or some other source. TRACKLINE creates a probability distribution about a
base track. This track can be constructed from as many as 10 segments, each of which can be a
portion of a rhumb line or of a great circle.

The motion of the target about each base track segment is specified by three circular nor-
mal probability distributions corresponding to target position at the initial, mid-point, and end-
point of each segment. Each simulated target track is obtained by drawing random numbers for
target position from these distributions and then connecting the points with straight lines.

Figure 3 illustrates a typical situation. The target’s point of departure and intended desti-
nation are assumed known, and a base track is constructed between these points. The base
track might be taken from the target’s float plan or hypothesized from the target’s past habits.
In the case illustrated by Figure 3, there are three track segments. The 50% circies of uncer-
tainty are assumed to grow in size to about midway along the track and then diminish. Since
the point of departure and intended destination are assumed to be known, the extreme end-
points of the entire track have zero uncertainty.
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In some cases. there is information which leads one to suspect that the disiress is more
likely to have occurred on one part of the track than on another. For example. as mentioned
above, the track may have passed through an area of storms and heavy seas. If desired, the tar-
gel location probability distribution generaied by TRACKLINE can be made to have a higher
density in such an area. This is done by specifying the highest probability point along base
track together with the odds that the d'struss occurred there rather than at the extreme end-
points of the track. These inputs deteiinine a truncated triangular probability density for the
fraction of track covered before the distress incident occurred.

Updating for Target Motion

The DRIFT program is used 1o alier a target location probability distribution to account
for the effects of drift. Normaliv, the DRIFT program will cause the center of the distribution
to move to a new location and the distribution to become more diffuse.

Targel motion due to drift complicates the maritime search problem. The prediction of
drift must account for the effects of both sea current due to prevailing circulation and predicted
or observed surface wind. Any object floating free on the ocean surface is transported directly
by surface current, and one component vector of drift is therefore equal to the predicted
current vector. A statistical file collected from ship reports over many years has been assem-
bled by the Couast Guard aad arranged by geographical focation and month of the year. The file
in use in the CASP system covers most of the North Atlantic and North Pacific Oceans.

As mentioned above, wind is also important in predicting target motion. With regard o
this factor, there are two major considerations. The first is the drift caused by the wind imping-
ing on the drifting object’s surface area above water, this is called "leeway." The speed and
direction of leeway is different for different objects, and is usually difficult 1o predict.

The second wind consideration is the movement of the surface layer of the ocean itself’
this is called "local wind current." It is one of the most complex and least undersiood
phenomena in the entire drift process.

The primary data source for surface winds in the CASP system is the Navy's Fleet
Numerical Weather Central in Monterey, California. Every twelve hours their computers gen-
erate a time series for hemispheric wind circulation, three of these time series are used to pro-
duce certain geographical blocks of wind data which are transmitted to the Coast Guard for use
by CASP. All data are retained in the system for two to three months.

The process of applying the drift motion to update a CASP distribution is simple enough.
First, a set of total drift vector probability distributions is computed for various geographical
areas based upon estimates of sea current, leeway, and local wind current. Then for cach target
location replication, a random vector of net drift is drawn from the appropriate probability dis-
tribution and used 1o move the target forward a short ime. The procedure is repeated unul the
entire update time is taken into account.

Updating for Negative Search Results

Once a search has actually been conducted, one of the two scarch update programs. REC-
TANGLE and PATH (depending upon the type of search), is run to revise the target location
probabilities to account for unsuccessful search. The effect is to reduce the probabilities within
the area searched. and to increase them outside,

M—w‘
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U pdaonye the target location probabilities for negative search results is carried out by an
apphication ot Baves™ theorem.  Recall that the target triple file contains J records of the form
(Y)Y ) for 1 s g £ J0 where the pair (X, ¥,) represents target position, and &,
represents the probability that the target replication would not have been detected by the cumu-
tative scarch eftort under consideration. The overall cumulative probability of detection taking
all simutated targets into account is called search effectiveness probability (SEP) and is com-
puted by the formula

J
SEP =1 ¥ @./J.
|

Let € be a region in the search area, and let B, denote the event, "target corresponds to
the #h replication and is in region " The posterior probability A (C) that the target is located
in (" given scarch fuilure is computed using Bayes’ theorem by

J
\(C) = Pr{Target in C| Search failure] = Y Pr{B,| Search failure}
1

,-

!
= Y Pri{Scarch failure | B} Pr{B,}/Pr{Search failure}
1

A
= Z. &b/ 2 ®,,

where I = 17 (V. Y) ¢ C) denotes the set of indicies corresponding to target replications in (.

Now suppose that g, denotes the probability of failing to detect the jth target replication
during a particular update period. Using the independence assumption, the new individual
cumulative fadure probabifity < is computed by

®o= g, b,

where ' denotes the cumulative failure probability prior to the last increment of search.

I'he computation of the conditional failure probability g, is carried out in CASP by use of
a (M Ao -detection model as described below.  Recall (e.g., see Koopman [2]) that the
“lateral runge” between searcher and target (both with constant course and speed) is defined as
the distance . closest point of approach. The "lateral range function” gives single sweep cumu-
lative detection probability for a specified lateral range for a specified period of time. The
integral of the lateral range function is called the "sweep width” of the sensor.

Ihe CASP programs* are based upon the assumption that the lateral range function for
the scarch unit s rectangular and is described by two parameters. M and 8. Here M denotes
the total wadth of the swept path, and 8 denotes the probability that the target would be
detected tor fateral ranges less than or equal 1o M/2. The sweep width W for the rectangular
lateral range function described above is given by

o= A

Navigational uncertaunues Cpattern error”) are introduced into the detection model by
assurming cach sweep iy a random parallel displacement from the intended sweep. The random

TA ol pron e d coase an mvetse cube teral range functon s deted o T rogerhier wet search patiern
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displacements are assumed to be independent identically distributed normal random variables
with zero mean and standard deviation. This model was introduced by R. K. Reber (e.g.. see
Reber [4])) and used extensively in certain Navy search analyses.

Rectangular lateral range functions are a useful way of approximating more complex
lateral range functions. If the actual lateral range function has sweep width M and is nonzerov
over an interval of width M, then one may define 8 10 be the average detection probability over
the effective range of the sensor, i.e., 8 = W/M. Appendix A of [4] shows that replacement of
the actual lateral range function by a rectangular lateral range function with average probability
B usua'ly does not lead to significant errors in the computed value of probability of detection
for parallel path search. Cases where there is significant disagreement occur when the lateral
range function is close to zero over a large part of its support.

Let G, denote the cumulative normal probability distribution function. Let (u, v} denote
the target’s position in a coordinate system where the origin is at the midpoint of a given
sweep, and where the w-axis is parallel to the sweep and the v-axis is perpendicular to the
sweep. Then for fixed M, B8, and o, the single sweep probability p(u, v) of detecting the targel

is given by
u+A v+7M]~G,,lv—-—g1“.

2 G

L
-G, lu—-=
-4

) plu,v) =B[G,,

where L denotes the length of the sweep.

If there are K search legs to be considered, and if (1}, v}) denotes the coordinates of the
Ah simulated target position relative to the kth search leg, then the failure probability ¢, is
given by

R
(2) q, = [1 D = ptuf, viOL

A=1

The application of these formulas in programs PATH and RECTANGLE can now be discussed.

Path. Program PATH is used to represent general search patterns constructed from
straight track segments. For example, PATH can be used 10 compute detection probabilities for
a circle diameter search where the search tracks are intended to cover a given circle by making
repeated passes through its center. PATH makes direct use oi” (1) and (2).

Rectangle. Program RECTANGLE has been designed for the special case where a rectan-
gle is searched using parallel sweeps. RECTANGLE reduces the computing time and amount
of input that otherwise would be required using program PATH. For a point outside the desig-
nated rectangle, the probability of detection ¢, is assumed to be 0. For a point inside the desig-
nated rectangle, "edge" effects are ignored and an average probability of detection is computed
#5 if there were an infinite number of sweeps, each infinitely long.

The following line of reasoning originated with R. K. Reber. Reber {4] presents results in
the form of curves and tables, and these have been adapted to program RECTANGLE by use
of polynomial approximations. Let § denote the spacing between sweeps. Since the sweeps are
assumed to be parallel and of infinite extent. the coordinate v} cxpresses the lateral range for
the kth sweep and the fth simulated target location and is given by

vh=pu, + kS

for ~c0 < k < oo and a number u, such that lx | € S
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Now for arbitrary u, refer to (1) and (2) and define g by

A= o h= o0

(3 g, )= [T U= pluu+kS) = [[ﬁo:,u+ks+—’;1 —G‘,p+kS——A21l]

Note that since the sweeps are assumed to be of infinite length, one has ¥ = o and g defined
by (3) does not depend upon u. The function g is periodic in its first argument with period u.
Let g(S) denote the average value of g(u, s) with respect to the first argument. Then

. 1 S .
g(8) = 5 J:) glu, S)du.

The function ¢ has been tabulated in 4] and is used in program RECTANGLE 10
represent the failure probability g, = £(S) for a point lying within the designated search rectan-
gle. RECTANGLE and PATH agree (as they should) when PATH is used to represent a paral-
lel path search.

Search Optimization

Two programs, MAP and MULTI. are used for optimizing the allocation of search effort.
MAP provides a quick way of determining the search cells which should receive effort based
upon a constraint on total track line miles available. MULTI determines search areas for multi-
ple search units under the constraint that each unit must be assigned a uniform coverage of a
rectangle and that the rectangles for the various search units do not overlap.

The method used in program MAP is based upon use of an exponential detection function
{sce Stane [8]) introduced by Koopman [3] and does not impose constraints on the type of
scarch pattern employed. The primary usefulness of this program is to provide the search
planner with a quick method for defining the area of search concentration. The following para-
graphs give a briet sketch of the methods used in these optimization programs.

Map  Let there be N search cells, and for 1 € n € Nlet p, and a, denote, respectively,
the target location probability and the area associated with the ath cell. The probability density
for warget location in the ath cell is given by d, = p,/a,. Suppose that total search effort is
measured by the product of track hine miles and sweep width.

Let y denote an allocation of search effort where y(n) denotes the amount of search
effort (measured in arca swept) allocated to the nth cell. Probability of detection P,ly] is com-
puted using an exponential effectiveness function, ie.,

N
Ppiyl = 3 p 01 - expl=yn)/a,l].
not

The objective 1s to maximize P, subject 1o a constraint on total effort available. This is easily
done using the techmigues introduced by Koopman (31 casier proofs are provided in Stone [8]
and Wagner [12).

It can be shown that under the above assumptions, the initial increments of effort should
be concentrated in the highest probability density cells, and that there should be a succession of
expansions to cells having lower target location probability density.

In order 1o derive the formulas vsed in program MAP, a new collection of equi-density
search regions s formed made up of the unions of all cells having cequal probability density
Let
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K = the number of equi-density regions

d, = the probability density for region &

/. = the set of indices corresponding 1o the cells comprising region k
A4, = the area of region k.

Using the above notation

4, = z .
AN

Let E, denote the total effort which must be expended before the optimal search expands into
the Ath region. Assume that the equi-density regions have been ordered beginning with the
region having the highest density. Since search begins in the highest density region, we have
£, =0 1t can be shown that in general for & 2 2

[N
(4) Eo=E  +Und - Ind) T 4,

=1

Figure 4 shows output from program MAP iHustrating the use of (4). The list shows the
25 highest probability cells specified by the latitude and longitude of the southeast corner. Each
cell is 18 munutes wide, and the numbers in the last column correspond to the values £, given
by (4). The planning advice given in [10} is 10 apply search effort to any cell for which the
vialue in the effort columa is less than the total effort available.

TOP 25 |
PROBABILITY | LOCATION | (S.E. CORNER) | EFFORT
1 005133 43-ON 69-45W
20041067 42-45N 69-30W 35.0
3 004133 43-ON 70-0W 363
4 004100 43-0ON 69-30W 40.3
S 0.03567 43-15N 69-30W 129.4
6 0.03467 43-15N 69-45W 152.8
7 0.03333 42-45N 69-15W 199.6
8 0.03267 42-30N 69-15W 2278
9 0.03267 42-45N 69-45W 22222
10 0.03267 43-15N 70-0W 2101
11 0.03200 42-30N 69-30W 264.1
12 0.02800 43-ON 69-15W 491 .5
13002733 42-45N 70-0W 547.2
14 002533 43-0ON 70-15W 7013 |
15 0.02267 42-30N 69-0W 976.5 |
16 0.02233 43-1SN 69-15W 983 1
17 0.02167 42-30N 69-45W 10951
18 0.02133 43-1SN 70-15W 1104 .4
19 0.02100 42-45N 69-0W 11753
200 (01867 43-30N 69-10W 1505.8
21 6.01867 43-30N 69-45W ;5058
22 0.01800 43- ON 69-0W 1659.9
123 0.01667 42-30N 68-45W 1968 0
124 001600 42-1SN 69-0W 21377
125 001600 42-15N [ 69-15W 21377
Froowe 4 Opromat albocaion of oo produced by Mg
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Notice that the numbers in the effort column are not necessarily increasing. This is
because the list is ordered according to containment probability rather than probability density.

Mulii. As mentioned above, program MAP does not take into account "simplicity” con-
straints which are considered important in operational planning. Program MULT! was designed
to overcome this drawback in cases where multiple search units are deployed in the same search
area.

The first simplicity constraint introduced is that each unit will be assigned to uniformly
search a rectangle. Figure 5 shows the dimensions of the optimal rectangle and the resulting
probability of detection under the assumption that the target location probability distribution is
normal. In order to use this figure, one first compultes the normalized effort £* by the formula

poo _RT__

g a

LAY min

where R is the sweep rate of the unit. T is the total search time, and o, and o, are the
standard deviations of the normal distribution when referred to principal axes. The optimal
search rectangle will have half side given by U* e, and U* o, where the size factor U® s
given by the designated curve with values read along the outer vertical scale.

Maximum probabiity of
detection achievable by
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Figure S provides curves to determine the probability of detection for the optimal rectan-
gle plan and for the unconstrained optimal plan. [t is interesting to note that n all cases the
probability of detection provided by the optimal rectangie plan is at least 95% of that provided
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by the unconstrained optimal plan. Thus, under the assumption stated, uniform search of the
optimal rectangle can be recommended without hesitation since, in most cases, the simplicity of
the rectangle plan is more important than the small improvement in effectiveness obtained by
the more complicated optimal plan.

MULTI is capable of allocating the effort of up to 5 search units to nonoverlapping rectan-
gles in a way which is intended to maximize overall probability of detection. The first step in
this procedure is to approximate the target location probability distribution by the weighted
average of k bivariate normal distribution where i < k < 3. This is done by locating the three
highest local maxima in the smoothed cell distribution and then associating each simulated tar-
get position with the nearest cluster point. If three local maxima cannot be found, then the
procedure is carried out with one or two local maxima. The mean and covariance matrix of
each cluster are calculated to determine the parameters of the approximating normal distribu-
tion.

The program next considers all possible assignments of search units to one of the three
approximating probability distributions. Since there are a maximum of five units and three dis-
tributions, there are at most 3° = 243 different ways of assigning units to distributions. For
each assignment, the program sums up the total effort available to search each distribution and
then computes the resulting optimal rectangle and associated probability of detection. If P,
denotes the conditional probability of detecting the target with optimal rectangle search given
that the target has the kth distribution (1 < k < k), then probability of detection A for the
allocation is given by

K
A= z Pka.
k=1

The program prints the allocation which gives the maximum probability of detection and
notes whether any of the rectangles overlap. If overlap occurs, then the next ranking allocation
is printed, and so on. This continues until an allocation without overlap is found or until the
top five allocations have been listed together with their associated detection probabilities.
Finally, when several units are assigned to the same rectangle, it is subdivided in a way which
preserves the uniform coverage.

Recently an alternative method for multiple unit allocation has been developed (see Dis-
cenza [1]) based upon integer programming considerations.

3. CASP CASE EXAMPLE

On 12 September 1976 the sailing vessel S/V Spirit departed Honolulu enroute San Fran-
cisco Bay. The owner, who was awaiting its arrival in San Francisco, reported concern for the
vessel to the Coast Guard on 14 October 1976 after it had failed to arrive. An Urgent Marine
Information Broadcast (UMIB) was initiated on 17 October. The following day, a merchant
vessel the M/V Oriental Financier reported recovering a life raft with two survivors from the
S/V Spirit which had sunk in heavy seas in mid-Pacific on the morning of 27 September. Sur-
vivors indicated three more crewmembers in a separate raft were still adrift. This information
opened an extensive six day air and surface search for the missing raft that eventually located
the raft with one of the missing persons on board.
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Each day’s search was planned utilizing computer SAR programs. 1nitial distress position
information was gained by radio-telephone debriefing of the survivors aboard the M/B Oriental
Financier on several occasions. The search began 19 October based on a SARP* datum for a
raft without a drogue from an initial reported position of 36N 136W. The second day’s search
was based on a SARP datum for a position 160 nautical miles to the northeast from the previ-
ous position (this position being determined from further debriefing of the survivors over
radio-telephone). The third through the six days’ searches were planned utilizing CASP output
from a POSITION scenario consisting of an ellipse with a 160 mile major axis and a 60 mile
minor axis. The CASP program was updated by RECTANGLE and DRIFT daily, and search
areas assigned to cover the highest cells which could be reached taking into account search unit
speed and endurance.

The following chronology is based upon the official USCG report and describes the utiliza-
tion of CASP in the search planning. This case is a good illustration of the many uncertainties
which must be analyzed during a search and the way both negative and positive information
contribute to eventual success.

21 October 1976

Search planning for the day’s operations utilized the CASP program for the first time.
New probable distress position information given by the survivors was evaluated and the CASP
program was initiated using a POSITION scenario with center length 160 miles and width 60
miles oriented on 046°T, with the southwest end at position 36N 136W. This scenario was to
be used for the rest of the search. A search plan was generated for the 21 October search cov-
ering approximately 8 of the 10 highest CASP cells as given in MAP. Ten units were desig-
nated for the day’s efforts and consisted of 3 Coast Guard, 2 Navy, and 4 Air Force aircraft and
the USS Cook.

The first aircraft which arrived on scene for the day’s search reported the weather in the
search area as ceiling varying 200-1500 feet (scattered), wind from 330° at 8 knots, seas 4 feet,
and visibility unlimited except in occasional rain showers.

At 3:06 PM an aircraft located what appeared to be the life raft of recovered survivors in
position 35-38N 138-12W. M/V Oriental Financier had been unable (o recover this raft when
the survivors were rescued. The USS Cook investigated and reported negative results.

Figure 6 shows the search plan for 21 October. Note that the target was eventually found
on 24 October in the first designated area C-1. There is, of course, no way of knowing where
the target was on the 2I[st.

22 October 1976

Planning for day’s search was done using updates from the CASP program. Search units,
consisting of 17 aircraft (3 Coast Guard, 6 Navy, and 8 Air Force) and the USS Cook. were
designated areas totaling 67,920 square miles for the day’s effort. Areas assigned were deter-
mined from the MAP’s twelve highest cells. High altitude photographic reconnaissance flight
utilizing U-2 aircraft was also scheduled, cloud coverage permitting, to cover an area of 57,600
square miles.

*A computer program implementing methods described in the National SAR Muanual and o precursor to ¢ ASP
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The first aircraft on scene for the day’s search reported the weather in the general area as
ceiling 1800 feet (broken), winds from 150° at 6 knots, seas 2 feet, and visibility 15 miles.

Search conducted during daylight hours utilized 15 aircraft, the USS Cook, and a U2 high
altitude reconnaissance flight. The USS Cook was unable 1o relocate debris sighted during pre-
vious day's search. Two Air Force aircraft failed to arrive on scene prior to darkness and were
released. Aircraft on scene searched 88 percent of 67,920 square miles assigned and obtained
POD’s ranging from 50 to 82 percent. The high altitude photographic reconnaissance flight was
conducted from an altitude of approximately 50,000 feet.

The CGC Campbell arrived on scene and relieved the USS Cook.
23 October 1976

The Rescue Coordination Center (RCC) was advised by the Air Force that development
of high altitude film had shown an "orange dot" in position 35-16N 139-05W. The photo-
graphed object was described as a round orange object, approximately 7 feet in diameter, float-
ing on the surface of the water.

Search planning was done using updates from the CASP program. Search units, consist-
ing of the CGC Campbell and 8 aircraft (2 Coast Guard, 3 Navy, and 3 Air Force), were
assigned areas of highest CASP cells. The object photographed by reconnaissance aircraft was
drifted by SARP and the CGC Campbell and 1 aircraft dedicated to locate it.

The first aircraft on scene for the day’s search reported weather in the search area as ceil-
ing 2000 feet, wind from 200° at 12 knots, seas 2 feet, and visibility 15 miles.

Search conducted during daylight hours utilized 8 aircraft and CGC Campbell. Search
units covered 97 percent of the assigned 34,300 square miles with POD’s ranging from 50 to 92
percent. Several sightings of assorted flotsam were reported but none linked to Spirit or rafits.
The object photographed by the high altitude reconnaissance flight on 22 October was not relo-
cated by search units.

Figure 7 shows the search plan for 23 October. Although not indicated in the chart, the
position where the target was found on the 24th is in the second highest probability density cell
from the CASP map.

24 October 1976

Search planning for the day’s operations was done using updates from the CASP program.
Search units consisting of the CGC Campbell and 5 aircraft (2 Coast Guard and 3 Navy) were
assigned areas of highest CASP probability totaling 18,082 square miles, with CGC Campbell
and one Coast Guard aircraft designated for location of the object reported by the reconnais-
sance flight.

The position of the reconnaissance flight sighting of 22 October was drifted utilizing
SARP and the new position passed to CGC Campbell for search purposes. The 11:00 AM
SARP datum was computed to be 35-29.4N 138-39.2W with standard first search radius of 16.9
miles. The search plan is shown in Figure 8.




COAST GUARD COMPUTER-ASSISTED SEARCH (CASP)

45N_

67

1st Raft Recovered
36-15N 139-23W
19 01302

NORTH
PACIFIC
OCEAN

PR
2nd Raft Reécovered |
35-53N 138-10W

24 21372

L

30N

—

ECHO SEARC

Hawdiian Islands

.” [,

150w

4

¢+ +or

37-54N

"SPlRlT"

prox. position

36N 136w
27 1900Z

H AREAS

- T'ropic of Cancer ﬂ

Distress Position Two

133- 36W
UNITED
STATES
Francisco
Sank

Los Angeles

1st Raft Recovered "SPIRIT" Sank

ECHO SEARCH PLAN

2nd Raft

{Recovered
+
=

AREA

~

eyt b b ke

z
~
1]

UNIT

NAVY P-3
NAVY P-3
NAVY P-3
AF HC-130
CG HC-130
AF HC-130
CG HC-130

POD

62%
52%
50%
78%
58/74%
92%
64%

50/60%
74%

z
-~
/3

AF HC-130
CG HC-130

00 =1 LD B

mmmm

Search plan based on CASP high probability
areas, distress position ellipse, and
reconnaissance sighting (E-1).

Note: POD is

the estimated
conditional probability
of detection given
the target is in the
designated area.

29N

142w 138W

134w
FIGURE 7 Search plan for 23 October




"————-’mﬂw

678

NOR

PACIFIC
OCEAN

HR. RICHARDSON AND J H. DISCENZA

TH 36-15N 139-23W

1st Raft Recovered

19 01302 \;\_Q

2nd Raft Recovey
35-53N 138-10W —
24 21372 L

Distress Position T
37-54N 133-36W

+
+

O

%."SPIRYI‘“ Sank
Approx. position

Hawatian £ slands

- - L)
’()

A50W

FOXTROT SEARCH AREAS

S«lr\ Francisco

UNITED
STATES

0s_Angeles
an Siego

36N 136W
27 1900Z

“Tropic bf_cin'c'er‘ -

120W

34N

“

36N

]
~Raft Recovered
35-53N 138-10W

FOXTROT SEARCH PLAN

AREA UNIT

NAVY P-3

[S U XN

NAVY P-3
NAVY P-3

T

CG HC-130

CG HC-130

F-2
|

32N

T—

138w

135W
FiGURE 8. Search plan

Search plan based on CASP high
probability area and reconnaissance
sighting (F-5).

for 24 October




COAST GUARD COMPUTER-ASSISTED SEARCH (CASP) 679

The first aircraft on scene for the day’s search reported weather in the search area as ceil-
ing 1500 feet, wind from 000° at 7 knots, seas 3 feet, and visibility 10 miles.

The CGC Campbell reported locating a rusty, barnacle encrusted 55 gallon drum in posi-
tion 35-27.2N 138-39.0W.

At 12:05 PM the search met with success! A Coast Guard HC-130H reported sighting a
raft in position 36-03N 138-00W with at least one person on board. The CGC Campbell pro-
ceded enroute to investigate, and at 2:37 PM CGC Campbell reported on scene with the raft in
position 35-53N 138-10W. A small boat was lowered to recover the survivor, and at 3:01 PM
all search units were released from the scene.

4. TRAINING

CASP training began with an operational testing phase in cooperation with the New York
RCC  This operational testing was useful in orienting the personpe! to the benefits derived
from more detailed search planning, and provided an idea of what the full training problem wus
going 10 be like.

Coincident with this, a training manual [9] and a cor pletely new combined operating
handbook [10} were developed encompassing all of the operational computer services available

At the time of official implementation in February 1974, a special four-day class was con-
ducted in the operation of the CASP system: this class was attended by one representative from
each Rescue Coordination Center. It was intended that these persons would learn the svstem
thoroughly and return to their respective commands and teach others. This plan was marginaih
successful, and worked only in those cases where an extremely capable individual was selecled
for attendance.

During the next six months. personnel from the Opurations Analysis Branch visited cach
Last Coast RCC for one week apiece in oraer to provide additional traiming. Subsequently. the
same visit schedule was repeated on the West Coast.

Anotner vatuable ool for fraiming has been telephone consultation  Fortunately . all mes-
sares irio and out of the computer are monitored at New York. and personnel can be helped
with the details ol inpu: and output with a quick telephone call on the spot.

Finaliv. the Nationai Scarc'i and Rescue School has made CASP training a regular part of
sy curneudum. The schood locsied on Governors Island. is responsible for initial traiing of all
RCC personnel tamong many athers) in the technigues of search and rescue. The present SAR
school Gamming session 1s four weeks o durstion with the fourth week devoted to computer
scarch planning systems tramny - Over halt of tis tme s devoted directly 1o CASP

Tre Coast Guard s carrenthy i the pracess of separating s admunistrative and opera-
N svstemis by establishing an Operational Computer Center This new Center wili gIVE Tes-
cie coordimatars direcr aecess 1o CASP through on-line termunais and will improve ¢ ASP's

avartahiie and refiabihiy Dyeractive program control will make the modules easier o use

The appheriion of CASP n operational situahions has heen quite successful. in spite of
sietthoan enoumberance: associated with comiie: ane communications Services
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Continued oceanographic research programs will expand CASP’s applicability to important
in-shore regions. Implementation of the new multi-unit allocation algorithm [1] is expected to
simplify the search area assignment problem. These additional capabilities coupled with
improved computer access and reliability should make CASP an even more valuable planning
tool in the future.
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CONCENTRATED FIRING IN MANY-VERSUS-MANY DUELS

A. Zinger

University of Quebec at Montreal
Montreal, Canada

ABSTRACT

A simple stochastic-duel model. based on alternate firing, is proposed. This
model is shown to be asymptotically equivalent, for small hit probabilities, to
other known models, such as simple and square duels. Alternate firing intro-
duces an interaction between opponents and allows one to consider multiple
duels. Conditions under which concentrated firing is betler or worse than
parallel firing are found by calculation and sometimes by simulation. The only
paramelters considered are the combal group sizes (all units within a group are
assumed identical}. the hit probabilitics and the number of hits necessary to
destroy an opposing unit.

1. INTRODUCTION

Two extremes for the modeling combat attrition are given by the so-called Lanchester
theory of combat, which treats combat attrition at a macroscopic level, and by the theory of sto-
chastic duels, which treats combat attrition at a microscopic level and considers individual firers.
target acquisition, the firing of each and every round. etc. (see Ancker [1, pp. 388-389] for
further details). Actual combat operations are, of course, much more complex than their
representation by such relatively simple attrition models and may also be investigated by mecans
of much more detailed Monte Carlo combat simulations. Unfortunately, such detailed Monte
Carlo simulations usually fail to provide any direct insights into the dynamics of combat without
a prohibitive amount of computational effort. In the paper at hand, we will consider a relatively
simple stochastic-duel model to develop some important insights into a persisting issue of mili-
tary tactics (namely, what are the conditions under which concentration of fire is "beneficial").

In his now classic 1914 paper, F.W. Lanchester [10] (see also [11]) used a simple deter-
ministic differential-equation model to quantitatively justify the principle of concentration. i.e..
a commander should always concentrate as many men and means of battle at the decisive point.
From his simple macroscopic model, Lanchester concluded that the "advantage shown to accrue
from fire concentration as exemplified by the n square law is overwhelming." However, this
conclusion depends in an essential way on the macroscopic differential-equation attrition model
used by Lanchester [10], [11] (see Taylor [14] for further discussion) and need not hold for
microscopic stochastic-duel models of combat attrition. In fact, this paper shows that for such
microscopic duel models it is not always "best" 10 concentrate fire.

Subsequently, many investigators have commented on the benefits to be gained from con-

centrating fire. For example, in his determination of the probability of winning for a stochastic
analogue of Lanchester’s original model, Brown (6] stressed the fact that the model applied 10
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cases of concentrated firing by both sides. Other investigators of deterministic Lanchester-type
models from the macroscopic combat-analysis point of view have also stressed this point (e
see Dolansky [7], Taylor [13], and Taylor and Parry [15]). Recently, Tavlor [14] has examined
the decision to initially commit forces in combat between two homogencous forces modeled by
very general deterministic Lanchester-type equations. He showed that it is not always "best” 10
commit as much as possible to battle initially but that the optimal decision for the initial com-
mitment of forces depends on a number of factors, the key of which is how the trading of
casualties depends on the victor's force level and time.

The first reference to problems of strategy in multiple duels is found in Ancker and Willj-
ams [2], who study the case of a square duel (2 vs 2) and arrive at the right conclusion that
parallel firing is better than concentrated firing. This is a natural conclusion since only one hit
is necessary to achieve destruction, and in concentrated firing there is a certain amount of
over-killing. In 1967, Ancker [1}] makes suggestions for future rescarch concerning mutliple
duels and states explicitly that the difficulties lie in the strong interaction between the contes-
tants. The possibility of needing more than one hit to achieve destruction in the simple ducl
situation was introduced by Bhashyam [4] in 1970.

The purpose of this paper is to combine some of the above mentioned concepts. in order
to gain insight concerning a problem of strategy in multiple duels—should one concentrate
one’s fire or not?

2. ASSUMPTIONS AND NOTATION

Let us consider two forces A4 and B that meet each other in combat. A4 consists of M units
and B of N units.

The following assumptions are made:

1. Firing is alternating, volley after volley, i.c.. 4 fires all weapons simultancously. then B
and so on until all units of a force are destroyed. This is contrary to the usual assumption of
¢ither simultaneous firing or random firing within some time intervals as found in Robertson
[12). Williams [17]. Helmbold [8], [9], Thompson [16]. Ancker [3]. It is felt. and will he
shown in a few cases, that for relatively small probabilities of hitting, this approach gives results
comparable to Ancker and Williams [2]. We will denote by , the probability of ¢ winning it ;
shoots first i, j = A.B. The unconditional probability of winning will be denoted by}, or 15

2. Hit probabilitics are constant and are respectively py and py. with g, = 1 — p,. i = 4B

3. Each unit of force A requires K, hits 1o be destroyed. Same lor B and K.

4. The supply of ammunition is unlimited.

5. There is no time limit to score a hit.

6. In a multiple duel (more than | vs 1) the units of 4 concentrate their fire on a single
unit of B while the units of B each fire at a different unit of 4. or spread their fire over all
available units of 4. this last case occurs when M < N B has to allow an amount of concen-
tration in order not to lose some shots. Concentration will be kept at a minimum to preserye

as much parallelism as possible. For example if M = 3 and N = 7 the pattern of fire for B has
to be
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7. The most general notation, for example, V, z(M,N. K Ky, p, pg) will be avoided 1t
possible and replaced by an appropriate simpler form.

Before proceeding, a general remark ought to be made: most of the difficulties come from
the asymmetry in the situation and from the interaction between the opponents. The same
model has to express concentration, dispersion and partial concentration of fire. Moreover, the
probability of winning depends upon the whole past history of the duel.

3. MULTIPLE DUEL. ONE HIT SUFFICIENT TO DESTROY ;

Let K, = Kg=1and let E(ij) be the state of group 4 with i units, and of group B with
J units.

If A fires first, the next state is
E(ij) with probability ¢/ and
E(ij — 1) with probability 1 — ¢j.

When B fires, let us first consider the case when j < i. Then,

J
E(ij) becomes E(i — k,j), k =0, ..., j with probability [kl phai*
and
Jj—1
EGj — 1) becomes EGi— k, j— 1), k=0, ..., j— 1 with probability K phab 't

If on the other hand ; 2> i some regrouping has to be done.
Let j = ai + bwith b < #, a, b € " The regrouping which spreads the fire the most is
given by
a shots are fired with a probability of success
1 — (1 — pg)®=1— Agateach of i — b targets
a + 1 shots are fired with a probability of success
1 — (1 - pg)e*' = 1 — A, at each of b targets.

Define r = min(i,j). Then both cases j < iand j 2 iare identical if one defines the probabil-
ity of transition from state £(i,j) 1o state E(; — k, j) when B fires as

o b r — b kl b‘k[ k() ’_b_k(l
3.1 @i, J k, pp) - . ,;_k k| kD a - A]) AI a- Ao) A(l
0 [}
kg=0.1 .r-b
k=01, .

Inthecase j < i, a=0, ko=0and k; = k.

— I
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It follows that if A4 starts and B returns fire once, the intial state £, j) can become
E (i, j) with probability ¢, @ (., j, 0, pg) = 4} gf
E(i — k., j) with probability ¢4 @ (. j. k, pg), k=1, ..., r
E(i — k,j— 1) with probabitity (1 — ¢{) (. j— 1, k. pgl. k=01, ..., r'
where r'=min (i, j — 1).
If B starts, the initial state E(i, j) can become
E (i, j) with probability ¢4 4 (i, j, 0, pg) = ¢ g4
E(i — k, j) with probability ¢4 * ¢Gij.kpg), k=1, ..., r
E(i— k, j — 1) with probability (I — ¢4™*) 0 (i, j. k. pg). k=01, ... r"
where r "= minli — 1, j).
Let Vg4 (M, N) denote the probability that group B wins with initial state £(M, N) and
A starts firing. Then
(3.2) Vgia(M, N) = g¥ g3 Vg, (M, N)

4

+ qu z ¢ (M. N, k, [IH) VBH (M — k, N)
A=)

+U=—g Y OM N~ 1k pg) VagrolM~k N— 1),
k=0

This corresponds to a decomposition into all the mutually exclusive and exhaustive ways for B
to win if A fires once and then B returns fire.

In a similar way

(3.3) VoigM, N) = gMali Vgiu (M, N)

+ 2 ([4Mﬂk 9 (M, N, k, [)1,) VB)B(M — k, N)
kel

+ 3 (= q¥ ) 0(M. N, k, pg) V1M — k. N~ 1),

k=)

Since we have
b (M. 0) = Vy (M 0)=0 all M
and
Vg (O, N) = by g0, N) =1  ali N

we can calculate in succession all required probabilities. For example, since @ (1,1, 1, py) = py,

one finds Vg, (1.1) = ¢q.pa/ (1 — q.qg). Using Vg (1,1) and @(1,1.0, py) = qg.
9(1.2.1. pg) = | — ¢4. one finds Vg, (1.2).

Explicitly. one gets, by assuming that 4 starts half the time,
Vy(M. 1) = % UVg M, 1)+ VagiM 1))

| M l
= graed™ TG+ gD T - anad).

1
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One can also obtain for g, = ¢ = ¢
1 +4g +4g2 + 1¢° + 4¢* + 3¢° + ¢°
20+ g2 +g) U +q+¢H)

VB(Z, 2) =

A comparison with the triangular duel and the first square duel [2] for p — 0, ¢ — |
gives

1_plqU+4¢) q(1 +¢?) 1/6
2 0-¢90-¢g¢Y 20+ @) +g+g) v

and ¥3(2,2) —1/2 which are the same limits as the one obtained from Equation 29 and 37
¢~
in [2).

VB(2, l) =

Table 1 gives some results for Vg(M, N, p,, pg).

TABLE 1 — (x 10%)

MIN |7 03] 03 ]05] 05 0.7 05 07
g 03 | 05 | 03| 05 0.5 0.7 0.7
1] 5000 | 6538 | 3462 | S000 | 3824 | 6176 | 5000
2| 2 5166 | 7307 | 3100 | S317 | 3850 | 6873 | 5447
3003 5678 | 8227 | 3405 | 6418 | S081 | 8343 | 7386
3| s 9634 | 9982 | 8869 | 9913 | 9805 | 9998 | 9994
51 3 1292 | 3806 | 0368 | 1780 | 0997 | 3907 | 2832
5| s 7258 | 9614 | S118 | 8940 | 8359 | 9920 | 9848
s| 7 9831 | 9999 | 9422 | 9994 | 9986 | 10000 | 10000
7] s 3418 | 7843 | 1626 | 6060 | SO7S | 9090 | 8629
7| 7 8850 | 9978 | 7538 | 9919 | 9853 | 10000 | 10000
10 | 10 9900 | 10000 | 9708 | 10000 | 10000 | 10000 | 10000

It should be noted that if py = pg = pand M = N then Vg 2>
with M. We conclude: Paruliel firing is better.

1 . .
3 and increases with p or

No simple relationship exists in the case p, # py. Neither Mp, vs Npg. nor M’p, vs

Npg are sufficient to decide if V5 > 7

4. SIMPLE DUEL. K HITS NECESSARY TO DESTROY

Let M = N =1 and let Vg ,(K,.Kg) denote the probability that B wins the simple duel
if A starts firing and K, hits are necessary to destroy 4 and K for B.

It is evident that
Vaia(KyKg) = py Vgig(Ky, Kg— 1) + q4 Vg ip(K,. Kp)

and

Veip(Ky. Kg) = pg Vg1 (K4 = 1, Kg) + qg Vg1 (Ky. Kp).
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This gives
4.1) (1- G4 QB) VBlA(KA' KB) = D4 PB VB|A(KA -1, KB -1
— P4 Veia Ky, Kg = 1) = q4pg Vaiu (K4 — 1, Kg) = 0.

In order to solve this difference equation, following Boole [5], let us define
x=K, y=Kg
U, = Veulx —1,y~1)

Diu = u,yy, and Dyu = u, ).

Substituting these into Equation (4.1) we get
(1 — 4 98) D, D, — psps ~ P4 48 D — 44 pp DyJu = 0.
Let D, = a.
((1 — q4498)a — paap) Diu = pplag, + pa)u
which gives
u=p§ps+qi D)1 ~q,q8)D, ~ pygg)™ 8 ()
where @(y) is arbitrary. Then,

x I . Paq A7
u=pi|3 piaj ' Df 'l(l—qum D~ —‘—”D_.,'] 9.

p—

=0 1- 9498

Since D, *#(y) = #(y — x) and

ll _ P44 Dy_‘]—x_ E

x+j- l] Pads ],D’
) ———1| D,

1- 4445 j=0 J 1—4q4458
we gel
X .
s e |qx+i-y ., ) o
u=I\1_ 22[7] ] piai ah (1 — quq) By — i — j).

q4 498 1=0 j=0
Taking into account that

Vel 1) = T‘%

a good choice for @(¢) is
W)=1ift >0
=0ifr <0.

Defining r = min (K, Kg — 1) the solution becomes
J

Al K‘ K‘ - LY
P Pe 4y qh(1 — q4qp)

, Kg—t-1 KA
(42) VB“(KA' KB) - 2 2 i

=0 ;=0
with
Vgia(K,. 0) = 0and Vg ,(0. Kg) = 1.

S N
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One can verify by substitution that this is a solution.

One can evaluate the other probabilities of winning by
Vais(Ka, Kp. pa. p8) = V14 (Kg. K4 pg. p4). {
Vaig{Ky, Kg, paopg) =1 — Vg(Ky Kg. pa. pg). !

and

Via Ky, Kg, papg) = 1 — Vg (K. Kp, pa.pg).

Table 2 gives some results for Vg (K, Kg. py, pg) and Vyig (K, Ky, py pg).

TABLE 2 — (x 10%)

Pa=3 pg=2S5| pi=pg="5 | pi=.5 pp=17
Ki Kg| Vi Veis | Vaia Ve Vaia V.5

5385 7692 3333 6667 4118 8235
4257 5010 1139 1728 2576 3579
8201 8630 4512 5488 7414 8381
5955 6541 1674 2266 4159 5278
8695 8981 4599 5401 7981 8669
9160 9330 4671 5329 8545 9002

S N~ -
O N Wn W -

—

This 1able indicates that Vg = 1/2if K, = Ky and p, = pg = 1/2, Vg increases towards 1
if K, = Kgand pg > p,and | Vg, — Vg 5l decreases if K, and Ky increase.

An interesting comparison is 1o be made with the results given by Bhashyam [4]. Under
an assumption of an exponential distribution for interfiring times he finds that the probability of
B winning is, using our notation,

P(B)-l", Pa (KB' K4)
Pitrg
where I, is the incomplete Beta function. The correspondance in the notations being Ap for p,,
A *p* for pg, R for Ky and R*for K,.

Table 3 shows at what rate a model with alternate firing converges towards Bhashyam's
model.

Alternate firing gives a good approximation if p is small. In fact, consider K, and K
fixed and p, = ¢ pg with pg — 0.

One can show that

Ky ]

J

i
(a+a* =

lim Vg, = - lim Vgip

c
1 +¢
and this limit from a well known theorem is

1 - ’_‘ (KB.K4’.

K
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TABLE 3 — Rate of Convergence of Vg 1o P(R)

P4 PB KA KB VB P(B)
0.4 0.2 5 5 | 0.1054
0.2 0.1 0.1265
0.02 0.01 0.1431
0.002 | 0.001 0.1447
0.1449
0.1 0.2 5 2 | 0.3391
0.01 0.02 0.3501
0.001 | 0.002 0.3511
0.3512
0.1 0.2 10 | 10 | 0.9491
0.01 0.02 0.9366
0.9352

S. SQUARE DUEL. 2 HITS NECESSARY TO DESTROY

Let M= N=2and K, = Kg = 2. One can represent the state of the two forces by (i,
iy j1. jp) with iy, i3, ji. j»=0,1,2, representing the number of hits necessary to destroy. For
example, (1, 1; 0, 2) means that A4 has 2 units that can be destroyed by one hit each and B has
one unit that has been destroyed by 2 hits and one unit untouched.

All attempts to arrive at one or two difference equations have been in vain. Two
equivalent approaches have been used. In the first, taking p, = pg = 1/2, and defining A, as
the matrix of the transitional probabilities corresponding to the case when A fires first, and B
the corresponding matrix when B fires first one obtains:

V, by summing all the probabilities for the events (i, j; 0, 0) in lim (4B)" and V4 by

n->o0

summing all the probabilities for the events (0, 0; j, j) in lim (B4)"

n->oo

The matrices are 29 x 29. The possible states of 4 are such that /| 2 i;. The possible
states of B are such that j, € j, and exclude j, = j, = | since 4 concentrates its fire until des-
truction is achieved.

Assuming the ordering i; 2 i;, two variations are possible. In Case 1, when the state is
(2.1, 0, /) with j = 1 or 2 and B fires, B chooses at random among the two units of 4. In Case
2, B fires on the second unit of 4, which can be destroyed by one shot. We find

InCase 1| V4= 05586
and in Case 2 V, = 0.5396

In both cases concentrated firing is better.

The other approach consists in writing down all the equations that define the battle. For
example,

Vaa2.2.1,2) = (1 — gD V,15(2,2.0.2) + @l V,15(2,2:1,2).
The difference between Case | and 2 is seen by considering
Vig(2.1.0,1) = 05p Vi f(1,1.0.1) +05p5 V,,(2,0,0,1)
+ g V(2,101
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or
V82, 1,0,1) = pg V4,,(2,0:0,1) + gg V142, 1,0, 1).

A third variation is possible in which no ordering is assumed for the ixs. Only the states with
iy = 0 are eliminated. In this case, B fires always upon the last unit of 4 but 2 states are con-
sidered

Vg2, 1,0, 1) = pg V,14(2,0,0, 1) + g V4,,(2,1,0,1)
and

Vyig(L 2,0, 1) = pg V4 (11,0, 1) + g V41402, 1:0, 1),
In this case V, = 0.5553 for p, = py = 0.5.

The total system consists of 35 pairs of equations and is solved by iterations.

Table 4 gives some results for the square duel in this last case. As in the two preceeding
cases, concentrated firing is better.

An extension of this last case is considered in the next section.
6. MULTIPLE FA R DUELS. K HITS NECESSARY TO DESTROY 1

Let us rest ct ourselves to the case of a fair duel, i.e., one such that M = N = n,
pe=pg=pand K4 = Kg= K

All nondestroyed units of 4 concentrate their firc on a single unit of B, volley after volley
until destruction is achieved. For the next volley they concentrate their fire on the next undes-
troyed unit of B.

There are nK + 1 possible states for B

Al

K. K ... K
K—-1K, K
K, ... K
0, K, K
3
0 0, .. 0
On the other hand B spreads its fire over ali units of 4 and all states are possible, eliminating ﬂ

only the destroyed units.

Since there are K" '/ different states with j zeros the number of possi%le states for A4 is
(K™ = D/(K = 1). ‘

This means that in order to find V,(K, ..., K, K, ..., K) we will have to solve a linear sys-
tem consisting of (nK + 1) (K"*' — 1)/(K — 1) pairs of equations of the form

V4.4 {state} = linear combination of V, 5 (outcome of A4 firing)

V.5 (state) = linear combination of V4 (outcome of B firing).
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TABLE 4 — (x 10%) Square Duel

Number
of

Pi=Pg=p | Vyu | Vais V4 Iterations
0.999 9980 40 5010 3
0.99 9809 382 5096 3
0.95 9193 | 1599 5396 4
0.9 8666 | 2573 5620 5
0.7 7573 | 3850 5712 8
0.5 6781 | 4324 5553 13
0.3 6117 | 4786 5452 25
0.1 5598 | 5198 5398 80
0.05 5487 | 5292 5389 157
0.025 5434 | 5337 5385 303
0.02 5423 | 5346 5385 373
0.01 5402 | 5364 5383 844

Unfortunately, the number of possible states increases very rapidly. A few values are
given:

Number of States

2 35

3 105
4 279
5 693
6 1651
2 91

3 400
4 1573.

This, however, is much better than (K + 1), which is the number of possible states without
any restrictions.

Since writing down the necessary cquations is an impossible task, a computer program was
written to build the equations and solve them by iteration. The main steps are:

(1) define the necessary states,

(2) define V,., = 0 for all states
Vyeg =0 forall states if Bis not destroved
Veg=1 if Bis destroyed.

These will be the initial conditions.

{3) For each state determine the number of effective units M, and Ny. If A4 fires. the
number of targets is 7 = | and the degree of concentration is ¢ = M,. 1t B fires, the number
of targets is 7= min(M,, Ng). If M, 2> Ny, the degrec of concentration is ¢ = 1 and if
Ny >My then Ny=a M, +bandcy=afor T)=M, - bunitsand c;,=a + | for T, = b
units.
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(4) Let Q.(i j)} denote the probability for a unit to go from state K = i to state K = j if
submitted to fire of concentration ¢. Then the matrix Q,, for example, has the form

0 1 2 K
1-¢* ¢

2 2

2 AN SN
~ N \\
\\ N N
N \\ N

K Npr T2 ¢

In general, fori=1, Kand j=0,1, ..., K

L. < j] pTigtT™ for j &0
Qt(i' .I) = K
1- ¥ Q.G j) forj=0.

=1

All required matrices are constructed.

5) For each state the equation giving V|, is constructed.

Let / denote the state of the target unit.

Let j denote the states of this unit after 4 has fired, the rest of B being unaffected.

Then,
Vigdiiy =Y QM<('}J') Vg (4. ))
1

the corresponding equation for ¥4,z is of the general form

;
Vaglinig ... inB) =3 (][I Q. Gede )| VaraUn,s -, Jr i B).
/1, e}
For example,
Vi5(1,2,0,0,0:;1,2,2,2,2) = Z 0,(1,/)) 0:02,jy Vaia1.42.0,0,0:1,2,2,2,2).

n=0.1
7= 12

6) When all possible states are gone through, the last calculated value is
Veg KK, ..., K, K ..., K).

It is compared, usually within 107°, to the previously calculated value and the process 1S
iterated until convergence is achieved.

Table S gives results for several values of M and K. The dimension of the linear system
is twice the number of states. The probability of a hit is taken as p = 0.5. Time is given for
some cases. The computer used was a CDC6400.

The value p =~ 0.5 was chosen because time increases very fast if p decreases, as is seen
from Table 4.

adodia
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TABLE 5 — (V, x 10%), Multiple Fair duel. Exact Results

Number Number .
Time
M=N| K of of Va (in seconds)
Equations | Iterations
2 2 70 13 5553
3 182 15 5988
4 378 17 6364
5 682 19 6661
3 2 210 13 5537
3 800 15 6211
4 2210 17 6822
5 4992 19 7289 1700
4 2 558 13 5152
: 3 3146 15 6132
i 4 11594 17 6872 6141
5 2 1386 12 4429
3 11648 15 5931 8960

Since exact calculations of ¥, become too time consuming, some results were obtained by
simulation. Table 6 gives some results. The number of trials was 2000 for p # 0.5 and 6000

for p = 0.5, A started the duel in half the cases.

TABLE 6 — (¥, x 10°),
Multiple Fair Duel. Simulation Results

p 0.1 03 |05 107 |09
M| K

2 2] 550 | s42 | 561 | 569 | 64
4 574 | 562 | 522 | 485 | 403
6 583 | 490 | 351 | 148 | 4
8 s80 | 382 |120] 2| o
10 562 | 249 11 o| o
23| 600 | 600 | 611 | 622 | 575
4 652 | 632 | 599 | 628 | 642
6 672 | 606 | 564 | 494 | 270
8 705 | 554 | 444 | 181 2
10 725 | 482 | 2330 6| o
24| 58 | 616 | 642 | 691 | 778
4 715 | 694 | 685 | 666 | 722
6 774 | 700 | 653 | 672 | 651
8 796 | 684 | 608 | 548 | 205
10 797 | 643 | 524 | 204 1
25| 630 | 646 | 674 | 708 | 705
4 754 | 753 | 760 | 748 | 556
6 812 | 786 | 725 | 665 | 852
8 838 | 777 | 668 | 698 | 601
10 878 | 740 | 639 | 594 | 134
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We note that for large values of p the behaviour of V, is erratic. This is due to the deter-
ministic issue of a battle for p = 1 as a consequence of alternative firing. For example, if
M = 6, k = 2 and A starts firing, the sequence of states is B: 022222, A4: 211111, B: 002222, 4:
210000, B: 000222, B wins,

Two independent estimates of the error can be made; one by comparing the results of the
simulation with the calculated values in Table Sforp =05, M =N=2o0r4and K = 2,3,4,
giving s = 0.0093, the other estimate is given by assuming a binomial distribution with 6000
trials giving s = 0.0065. To be on the safe side one can conclude that concentrated firing is
better if the simulation gives V,; 2 0.519 and parallel firing is better if the simulation gives
V, £ 0.481. This does not take into account the bias introduced by alternate firing for "large”
values of p. Since the sign of the bias is evident, one can adjust one’s conclusions, for example
for M = 10, K = 4 and p = 0.5 the observed value 0.524 is pulled down and almost certainly A
wins more often than B. On the other hand for M = 8, K = 3 and p = 0.5 the value 0.444 is
certainly pulled down and one can hardly conciude that B wins more often.

Table 7 summarizes all the results obtained.

TABLE 7 — Better Strategy of Firing

Concentrated Parallel Border cases
p=01 K =22 K=1
p=03 | K=3 2« M<K 4 K=2 M271K=2 M=5o0r6
K=13 2 M<LK8 K=3 M=9o0r10
K=45 2 < M < atleast 10
p=051| K=2 2 ML K=2 M25|K=2 M=4
K=3 2 MLK6 K=3 M27
K=14 2< ML 10
K=35 2 < M < atleast 10

One can conclude that concentrated firing is better if the combination of group size and
hit probability does not produce a high degree of overkilling. For KX > 2 a rough rule could be
concentrate firing if pM < K (the exceptionis p = 0.5, K =4 and M = 9 or 10).

Up to this time we have compared two strategies: parallel firing and concentrated firing.
In the next section we will attempt to define the concept of partial concentration.

7. MULTIPLE FAIR DUELS. PARTIAL CONCENTRATION OF FIRE

Let M=N=n,p,=pg=pand K, = Kg= K. Let ¢y be the maximal number of non-
destroyed units of A that are allowed to concentrate their fire on a single unit of B, volley after
volley until destruction is achieved.

If ¢y = 1, A uses parallel firing in the same manner as B. If ¢y = n, A uses concentrated
firing.

Under partial concentration the number of targets for 4 is given by the integer function
n+cy—1 ]

T =
A cy

kit o ren b o b e e

i
i
i
|
i
1
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and the number of possible states for B is
K" —1
K -1
which reduces to nK + 1 for T, =1 and (K"*' — 1)/(K — 1) for T, = n. The number of
linear equations to be solved becomes

(n=T,+DK"+

K™ -1

Kn+l_l
2 K—-1

-_— TA
X1 n-T,+1)K*+

The value ¢y = 1 (T, = n) was used to determine the precision of the obtained results,
since ¥, = 0.5. For p = 0.5 the maximum error found was 3 x 1075 and for p = 0.1 it was
1x 1074

Table 8 gives some calculated results for p = 0.5.

TABLE 8 — (V, x 10*), Partial Concentration

Number Number
M=N| K| ¢ of of Vs
Equations | Iterations
3 2 2 330 13 5404
3 2 1760 15 5950
4 { 2 6290 16 6412
4 2 2 930 12 5639
3 930 13 5192
3 2 7502 14 6304
3 7502 15 6127
5 2 2 3906 12 5541
3 2394 12 5311
4 2394 12 4523 |

Comparing the results of Table 5 and Table 8, one sees that partial concentration with
cy = 2 is better than total concentration for the cases M = 4 and kK = 2 or 3 and any partial
concentration is better for the case M = § and k = 2. Further investigations are needed.

8. SUMMARY

The proposed model is an idealization of combat between small groups of individual
identical firers and is very far from the very complicated process of real combat. However, it
has provided, through the use of alternate firing as an expression for the interaction between
opponents, some important insights into combat dynamics that could be further investigated
with, for example, a high-resolution Monte Carlo simulation. It has been shown that alternate
firing gives the same results for small hit probabilities as some previously developed models. It
has also been shown that the relationship between the size, the hitting capacity and the resis-
tance of the opponents is a complex one and that concentrated firing is better than alternate
firing if the amount of over-killing is not too high. Moreover, some evidence suggests that par-
tial concentration can be even more effective.
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ABSTRACT

During basis reinversion of either a product form or elimination form lincar
programming system, it may become necessary o swap spike columns to effect
the reinversion and maintain the desired sparsity characteristics. This note
shows that the only spikes which need be examined when an interchange is re-
cred are those not yvet processed 1in the current external bump

I. INTRODUCTION

An important component of a large scale linear programming system is the reinversion
routine. This paper addresses an important ancillary technique for implementing a reinversion
routine utilizing the pivot agenda algorithms of Hellerman and Rarick [5.6]. Production of fac-
tors during reinversion typically involves a left-to-right pivoting process. Unfortunately. during
the left-to-right process, a proposed pivot element of a spike column may be zero. in which
case columns are interchanged in an attempt to obtain a pivotable column while maintaining
desired sparsity characteristics. In this papcr we show that the only columns which need be
considered for the interchange with a nonpivotable spike are other spikes lying to the right
within the same external bump.

II. PRODUCT FORM OF THE INVERSE
Let B be any m x m nonsingular matrix. One of the most common factorizations for B '
is the product form which corresponds to the method for solving a system of linear equations

known as Gauss-Jordan reduction (see [3. 4]). This procedure is used to represent B ' (or
row and column permutation of B!} as the product of matrices each of the form

Z = z , — jth row

*This research was supported in part by the Air Force Office of Scientific Research under Contract Number AFOSR
77-3151.
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698 R.V. HELGASON AND J L. KENNINGTON

where z is an m-component column vector, and j is called the pivot row. A few observations
concerning Z are obvious.

PROPOSITION 1. Z is nonsingular if and only if z; # 0.
PROPOSITION 2: Let 8 be any m-component vector having 8, = 0. Then Z8 = 8.

PROPOSITION 3: Let 8 be any m-component vector having 8; # 0, and let e/ denote
the vector having jth component 1 and all other components zero.

_Bk/Bjr if kK #= j )
Le!zk- l/ﬁ), lfk-J . Then ZB-eJ

Let B (i) denote the ith column of the matrix B. Consider the following algorithm.
ALG 1: Product Form Factorization
0. [nitialization

Interchange columns of B, if necessary, so that the first component of B(1) is nonzero.
Seti— 1,8 — B(1), and go to 3.

1. Update Column
SetB— E™' ... E'B(i).
2. Swap Columns If Pivot Element Equals Zero

If 8, # 0, go to 3; otherwise, there is some column B({j) with j > i such that the ith
component of y = E'~! ... E'B(j) is nonzero. Interchange B(j) and B (i) and set 8 ~— y.

3. Obrain New Elementary Matrix

Set
1/8;, for k = i
—B./B;, otherwise,

ﬁ H — ith row

4. Test for Termination

If i = m, terminate, otherwise, i ~— i + |1 and go to 1. At the termination of ALG 1,
E™ ... E' is a row permutation of 8.

In the following two propositions we show that if in Step 2, 8, = 0, then the proposed
interchange is always possible. Consider the following:

PROPOSITION 4: Fori < j, E/ ... E'B(i) = ¢'.
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PROOF: By the construction of £' and Proposition 3, £'... E'B{i) = ¢'. By Proposition
2, EV ... "itlet= ¢l So E/... E'B(i) = ¢'. Using Proposition 4 we may now show the fol-
lowing:

PROPOSITION 5: For 2< i< m let B=E"'. . E'B(i). If 8, =0, there is some

j > isuch that [E'7) ... E'B(j)), #= 0.

PROOF: Suppose [E""'...E'B(j)],=0 for ali j > i By the construction of
E', ... E"' in ALG 1, and Proposition 1, each factor is nonsingular. Since B is nonsingular,
E' ' ... E'B is nonsingular. By Proposition 4, E7! . E'B(j)=¢ for 1 €< i~ 1

Hence, the ith row of £'7' ... E'Bis all zero, a contradiction.

I11. BUMP AND SPIKE STRUCTURE

In order to minimize the core storage required to represent the ETA file. ie.,
E'. ..., E™, the rows and columns of B are interchanged in an attempt to place B in lower tri-
angular form. If this can be accomplished, then the m nonidentity columns of E'. ..., E™.
have the same sparsity structure as B. Consider the following proposition:

PROPOSITION 6: If the first j — 1 components of B(j) are zero for j > 2, then
E' Y E'B(G) = B(j).

PROOF: This follows directly from successive application of Proposition 2. Therefore, if
B is lower triangular, the factored representation of B~' may be stored in approximately the
same amount of core storage as B itself. In practice it is unneccessary to calculate the elements
1/8, and —B,/B,: in Step 3 of ALG 1. It suffices 10 store k and the elements of 8,. It may
prove advantageous to store 1/8;. in addition. 1f Proposition 6 applies for B(k), then
B = B(k) and the only additional storage required is for the index k (and possibly 1/8,).
Clearly, this results in substantial core storage savings compared to storing B ! explicitly.

If B cannot be placed in lower triangular form, then it is placed in the form:

BI

N A
S S

where B' and B® are lower triangular matrices with nonzeroes on their diagonals. We assume
that if B? is nonvacuous. every row and column has at least two nonzero entries. so that no
arre 2 .. . he size of B! B B?is calle - . i
rearrangement of B° can expand the size o or B'. is called the bump section, the merit
section or the heart section. We further require the heart section to assume the following form

|

F'
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where G*'s are either vacuous or lower triangular with nonzeroes on the diagonal. The only
partitions in B having columns with nonzeroes above the diagonal are the F*'s which are called
external bumps. The columns extending above the diagonal are called spikes or spike columns.
An external bump is characterized as follows:

(i) the last column of an external bump will be a spike with a nonzero lying in the top-
most row of the external bump, and

(i1) the nonspike columns have nonzero diagonal elements.

The algorithms of Hellerman and Rarick [5,6] produce such a structure for any nonsingular
matrix, and we shall call a matrix having this structure an HR matrix. It should be noted that if
one applies ALG 1 to an HR matrix, then the only columns which may require an interchange
are spike columns. We now prove that the only columns which need be considered for this inter-
change are other spikes in the same external bump.

Consider the following result:

PROPOSITION 7: Let B(i) with i 2 2 correspond 1o the first column of some exiernal
bump, F*, and let B(j) be a spike in F*. Then £ ... E'B(j) = B{j).

PROOF: Note that the first i — 1 components of B(j) are zero. Therefore, by successive
application of Proposition 2, the result is proved.

Note that Proposition 6 allows one to eliminate all of the calculation required in Step | of
ALG 1 for nonspike columns and Proposition 7 allows one to eliminate some of this calculation
for spikes. We now address the issue of spike swapping. Consider the following propositions:

PROPOSITION 8: Any spike B(;j) which is not pivotable cannot be interchanged with a
spike B(k), k > j, from another external bump, to yield a pivotable column.

PROOF: Since B(k) is from an external bump lying to the right of the external bump
containing B(j), B, (k)=0. By repeated application of Proposition 2, £’ N
B(k) = B(k). Thus B(j) cannot be interchanged with B (k) to yield a pivotable column.

PROPOSITION 9: Any spike B(j) which is not pivotable cannot be interchanged with a
nonspike column B(k), k > j, to yield a pivotable column.

PROOF: Let B(k), with kK > j correspond to any nonspike column. From Proposition 6.
E'' ... E'B(k) = B(k). Since the jth component of B(k) is zero, B(j) cannot be inter-
changed with B(k), to yield a pivotable column. We now present the main result of this note.

PROPOSITION 10: Any spike column B (), which is not pivotable can be interchanged
with a spike, B (k). with k > j within the same external bump, to yield a pivotable column.

PROOF: If B{(j) is not pivotable, then by Proposition S there exists a column B (k) with
k > j which is pivotable. By Proposition 8, B(k) cannot be a spike from a different external
bump. By Proposition 9, B(k)} cannot be a nonspike. Hence B(k) must be a spike from the
same external bump.
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In practice, the zero check in step 2 is replaced by a tolerance check. Discussions of prac-
tical 1olerance checks may be found in Benichou (1], Clasen (2], Orchard-Hays (7], Saunders
{8], Tomlin (9], and Wolfe [10].
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ABSTRACT

—_ g -4 & -
Let H(¢) = 2 E—kfl Plk), 0 € 1 < o, where 4(1)/1is nonde-
k=0
creasing in ¢, (P is nonincreasing. 1t is known that H (1) = 1 — H is
an increasing failure rate on the average (IFRA) distribution. A proof based
on the IFRA closure theorem is given. H (s} is the distribution of life for sys-

tems undergoing shocks occurring according to a Poisson process where P(k) is
the probability that the system survives k shocks. The proof given herein
shows there is an underlying connection between such models and monotone
systems of independent components that explains the IFRA life distribution oc-
curring in both models.

1. INTRODUCTION

In Bariow and Proschan (1, p. 93] a fairly general damage model is considered. A device
is subject to shocks occurring in time according to a Poisson process with rate A. The damage
caused by shocks is characterized by a sequence of numbers {P(k)}. where P(k) is the proba-
bility that the device will survive k shocks. The P(k)'s as shown in [1] can arise in different
models. For example, the damage caused by the ith shock can be assumed to be a nonnegative
random variable X,, where X, X, ...kare independent and identically distributed: failure of the

device occurs at the kth shock if Y X,, the cumulative damage, exceeds a certain thres-
=1

_ A
hold. In this case P(k) = Pr Z X < yI, where y is the threshold. Ross [2] has failure occur-

ring when some nondecreasing symmetric functiokn DX, .... X,) first exceeds a given thres-
hold: i.e.. D(X,, ..., X,) is a generalization of 3 X,. Here, P(k) = Pr{D(X,, ... X,) < y}.

t=1
Let H(1) denote the probability that the device survives in the interval [0, t]. Then

Awn=3 C200 By o< <o
‘a0 k!
In Barlow and Proschan (1] (Theorem 3.6 p. 93) it is proven that if {P (k)" *] is a nonincreasing
sequence then H(r) =1 — H(r) is always an increasing failure rate on the average (IFRA)

*Work supported in part by the Office of Naval Research under Contract N00O14-75-0620 and the National Science
Foundation under Girant No  M(S$-7725-146 with Columbia University
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is nondecreasing in .

distribution function; i.e., M

Ross (2], generalizes by allowing the Poisson process of successive shocks to be nonho-
mogeneous with rate function A (¢} such that

A fi s
t t

is nondecreasing in . That is, the same assertion can be made when H (1) is given by

— oo -4 k
M A= ye—AW?

i '
! &«

PO

P(k), 0 €t < oo.

The proof given in [1] is based on total positivity. arguments. Ross’s technique for prov-
| ing the IFRA result is obtained by making use of recent results (3] pertaining to what he calls
| increasing failure rate average stochastic processes.

Our proof below shows that all such results are a consequence of one of the central
theorems of reliability theory, the IFRA Closure Theorem ([1] p. 83). This theorem asseris
that a monotone system composed of a finite number of independent components, each of
which has an IFRA life distribution, has itself an IFRA distribution.

It is remarked in [1, p. 91] that the coherent (or monotone) system model and the shock
models under consideration are widely diverse models for which the IFRA class of distribution
furnishes an appropriate description of life length, thus reenforcing the importance of the IFRA
class to reliability theory. The implication of our proof is that the models are not as widely
diverse as supposed.

The idea of the proof is the construction of a monotone system (of independent com-
ponents, each of which has the same IFRA life distribution) whose life distribution approxi-
mates H{1). The proof is completed by allowing the number of components in the system to
increase in an appropriate way so that the approximating life distributions converge 10 H (1),
the IFRA property being preserved in the limit.

2. APPROXIMATING SYSTEMS APPROACH

Foreach m, m = 1.2 . .let §,,, n=1,2, ... be a monotone system of n independent
components. Let

(1) P, .(k) = Pr{no cut set is formed | exactly kK components of S,, , are failed)

where all of the n components are equally likely to fail. (A cut set is a set of components such
that if all components of the set fail, the system does not function). Assume

) P,.(k) =0, if kK > m for every n,
3) lim P, , (k) = P, (k), for every k
4) lim P, (k) = P(k). for every k. ‘

We can state
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THEOREM 1: If A(1) >0, Ai')

H(t) = 1 — H(r) given by (1) is IFRA.

is nondecreasing and (2), (3) and (4) hold, then

PROOF: Assume every component in S,, is independent with life distribution
L(t) =1— e 4" Then every component has an IFRA distribution. Let Q, (k1) denote
the probability that exactly k units fail within {0, ¢]. That is

5 Oy (K1) = lj[l— e;i"gl_)_]k [e__L"(,l]n-k.

Let I-{,,,,,,(r) denote the probability that S, , works for at least ¢ units of time, then

) Hool) = 3 Opn (k1) By o (k).

k=0

By the IFRA Closure Theorem, H,, ,(r) is IFRA.

However,
)] H,(t) = lim H, (1) i

m

= T lim Q,,(kt) P, (k) i
k-on 5
m oo A(r)A(')k -

- R
o0 —Afr) k

- Z___"(L)_p (k)
=0 k!

by (2), the Poisson limit of binomial probabilities, and (3). Smce the IFRA_property is
preserved in the limit, H,(¢) is IFRA. That is, since H,(/) = hm H,,.,,(t) and

~(log H,, ,(1))/tis nondecreasing in 1, then so is —(log H,,(r))/t. However, {

- Al
I|m H,(t) = Z—A(l)" lim P, (k)

k! m—co
- 2 -Al) A(’) P(k)
k=0

= H(1).

Since again the IFRA property is preserved in the limit, it follows that H(r) is IFRA, proving
the theorem.

We emphasize that the IFRA Closure Theorem is invoked only to show that that H,,,(1)
is IFRA. The condition that A(r)/t is nondecreasing is needed so that all components of S,,,
have an IFRA distribution.

3. APPLICATION OF THEOREM

The condition that {P(k)"/*] is a nonincreasing sequence is not used in the proof nor does
it appear in the statement of Theorem I. That the condition is implicit is due to a recent
remarkable result of Ross, Shashahani and Weiss (4] that {P(k)"*) is necessarily nonincreasing.
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To apply Theorem 1 for our purpose we must show

THEOREM 2: Let {P(k)} be any sequence such that 0 < P(k) € 1 and {P(k)"* is
nonincreasing. Then there exist the monotone systems (S, ,} such that (2), (3), and (4) hold.

PROOF: Let {P(k)} be any sequence with the hypothesized properties. Let F be any
increasing continuous distribution function over [0, o) and {y,} the nonincreasing sequence of
nonnegative numbers such that

F(y,) = PV, k=1,2, ...

For each m(m < n) let §,, be a set of n components, i = 1, ..., n. The cut sets are con- .
structed in the following way. The ah component has an associated value x, i=1, ..., n i
where the values are assigned so that

#lilx, < x}=1n F(x)], 0 < x < y,.

=-nx >y,
where # means "number of" and [ ] is the greatest integer designator. Every set of & com-
ponents is a cut set if kK > m if Kk < ma set (iy, ..., i,) of components is a cut set if and
only if
max (x,, ..., x,) > y.

Since {y,} is nonincreasing, S,, , is, indeed, a monotone set. But here,
5l [nF(y,.)] -

P, .(k) =~ ’_l_% P <m
=0 , k> m
Thus,
P, (k)= lim P, .(k)
F(y), ifk < m
1o L ifk>m
and

lim P, (k) = F*(y,)

-P(k)., k=12 ... .

This proves Theorem 2.
Theorems one and two yield the slightly more general version of Theorem 3.6 [1, p. 93].

The Ross {2] generalization follows by defining the cut sets to be determined by a nonde-
creasing symmetric function D{(x,, ..., x,), i.e., aset i, ..., i, of components is a cut set of
Sma if k> mor if k < m when D(x,, ..., x,,) > y, a given threshold value. From the

construction of Theorem 2, Theorem 1 and the result referred to in [4] it follows that the
sequence (P(k)} of this model satisfies the monotonicity condition. For the special case of
]

D(X,, ... X,)= ¥ X.itis known that the sequence {P(k)"¥ is nonincreasing (see (1] p.
I-’
96).
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Defense Systems Management College
Military Reservist Utilization Program

Military reservists from all U.S. Services now have a unique opportunity for a short tour :
at the Defense Systems Management College, Fi. Belvoir Virginia. By volunteering for the !
Reservist Utilization Program, an individual can increase proficiency training, maintain currency
in DOD Research, Development & Acquisition Policy, contribute to the development and for-
mulation of concepts that may become the bases of future DOD policy and help solve critical
problems facing the acquisition community.

Once accepted for the program, a reservist may be assigned to one of three areus:
research, education or operations. As a research associate, the individual researches and
analyzes an area compatible with his training and experience. Many reservists in this category
currently assist in the preparation of material for a comprehensive textbook on sysiems acqusi-
tion. The text will be used at DSMC by the faculty and students as well as by the systems

acquisition community. As an academic consultant, a reservist provides special assistance (o r
the College faculty by reviewing course material in his area of expertise and researching and

developing training materials. In the operations/administration category. reservists administer ‘
the program by recruiting other reservists for the program, processing these reservists, and ;

maintaining files and records.

Because of the complexity and broad scope of the systems acquisition business, the Reser-
vist Utilization Program requires a large number of reservists {rom many diverse career fields.
Some examples of career ficlds used include: engineering. procurement. manufacturing, legal,
financial. personnel, administration and logistics. Reservists whose reserve duty assignments
are not in these types of carcer fields, but who have civilian experience in thesc areas. are also
urged Lo apply.

Many reservists perform their annual tours with the Reservist Utilization Program othee
Others perform special tours of active duty or "mandays.” When tour dates are determined and
coordinated with your organization and the RUP office. submit the proper forms through vour
reserve organization at least 45 days prior to the tour date for an annual tour or 60 days for a
special tour.

To apply for active duty or to get additional information, telephone Professor Fred b

Roseil, Jr. at commerical (703) 664-5783 or AUTOVON 354-5783. Reservists outside of Vir-
ginia may call on toll-freec number (800) 336-3095 cxt. 5783.
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CORRIGENDUM:
STOCHASTIC CONTROL OF QUEUEING SYSTEMS

Dr. A, Laurinavicius of the Institute of Physical and Technical Problems of Energetics,
Academy of Sciences, Lithuama, USSR, has pointed out an error in the statement of Theorem
1 of this paper (1]. The expression for the generator given there is valid only for x > 0. and 4
different expression holds for x = 0, the proof for this case being simiar. Moreover, the
domain of the generator can be extended. The correct statement is as follows.

THEOREM 1: Let the function f{(r,x) be continuous and such that the directional deriva-
tives
SU+ hx —h) = flx)

(1 Dy flx) = lim (x > 0)
=0+ h
2) Dy /(1,0) = lim LUt RO =00 _ 8+ 4,
¢ h—0+ h or
where P = {1, ~ 1) and G = (1,0), exist, be continuous from one side and bounded. Then
the infinitesimal generator of the semigroup {7,} is given by
(3) AFUX) = Dpf(x) = Afx) + & f. flx + VB for x > 0

= D5 /1.0) = a7(0) + A [ fUVIBav) for x = 0.

As a consequence of this error the example of Section 3 does not lead to the stated result.
A correct example is provided by the following. Let r(r), the revenue per unit time, and ¢ {7),
the operating cost per unit time, be given by

rity=rfor0< <+t and=0 forr >
c(r)=c for0< 1 <1, and = c,for1 > ¢,
The profit from operating the system up to a time Tis given by f(T, W;), where
(4) Slx)y = rmin(tty) — cy1g — ¢y max (0,1 + x — 1g).
This leads to the following correct version of Theorem 3.
THEOREM 3: Let W, = w < ¢, and assume that
(5) Ae) f“ 1 = BOWdv < r < AcyB
where 8 is the mean service time. Then the optimal time is given by
(6) T,=inf{t > 0.t + W, 2 aj
where a is the unique solution of the equation

(1) xe, [ 11— BWldv =r.
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PROOF: It is found that for x 2 0
S Utx + v - se1B@ ==, f 1= By

y=1-x)*
where (fp— ¢ — x)* = max (0,1 — ¢ — x). Also,

Dp ftx) = rfort < 13, and = O for ¢t 2 1, (x > 0)

Dg f(1.0) = r for t < 1o, and = —c, for t > 1. i
Therefore, the generator in this case is given by
AF@x) =r=her f° = BOldvior i <ty x > 0
=—-\B forr 21y, x>0
® =—c;— A8 fort 2 19, x=0.

In applying Theorem 2 we note that A/ (s,x) < 0 for t 2 15, x 2 0, so it suffices to consider
Af(x) fort < 15, x 2 0. We can write

Aflex) = ¢t + x) fort < t5, x 2 0,

where

) () =r— ey f(,(,-m [1 ~ B(v)ldv.

We have
¢(0) = r ~ Acy f,o 1 — BWIdv > r — Ac, f,o-w (1 - BWldv > 0
¢(t0) =r - ACZB <0

on account of (5). Also, ¢(¢) is a decreasing function of « Therefore, there exists a unique
value a such that ¢(1) > 0for 0 < r < gand ¢ (1) < Ofor a < t € 1, Since ¢(¢) < 0 for
t 2 1y, we have ¢(r) € 0 for + 2 a This means that Af(1x) < 0for + + x 2 a, so the set
R of Theorem 2 is given by R = {(1,x): ¢t + x > a}, and the time of the first visit to R is
given by (6). Since the process { + W, is monotone nondecreasing with probability one, the
set R is closed. Moreover, T, < a with probability one and also E{T,) < o. Thus, the condi-
tions of Theorem 2 are satisfied, and T, is optimal at Wy = w, as was required to be proved.

A particular case: Let B(x) =1 — e™* (x 2 0, 0 < u < o). The conditions (5) reduce

to
A
(10) w<to——l—log 2a < 1
mn
and the Equation (7) gives
A
(11) a-ro-——l—log ﬁ.
® wr
On account of (11) we have a > w.
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